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In 1988 the first author devised a computer program to search a unit-square grid for
closed paths with the following properties. The path starts along a lattice line with a
segment of unit length, turns 90 degrees in either direction, continues for 2 units,
turns again in cither direction, continues for 3 units, and so on. In other words, the
segments of the path are in serial order 1,2,3,... N, with a right angle turn at the end
of each segment. A path of N segments—the number is of course the same as the
number of turns or corners—is said to be a path of order N.

If the path returns to its starting point, making a right-angle with its first segment,
we call it a serial isogon of 90 degrees. The isogon is allowed to self-intersect, to
touch at corners, and to overlap along segments. Think of it as a serial walk through a
city of square blocks and returning to the starting corner, or as the moves of a rook on
a large enough chessboard.

It is not obvious that such paths exist. However, with a little doodling you will
discover the unique isogon of order 8, the lowest order a 90-degree isogon can have.
It outlines a polyomino of 52 unit squares that, as Ficure 1 shows, tiles the plane.
Indecd, it satisfies the “Conway criterion” [1] for identifying tiling shapes. The
boundary of the polyomino can be partitioned into six parts, the first and fourth of
which (AB and ED in Ficure 2) are equal and parallel, while the other four
(BC=3; CD=4,5,4; EF =7; FA=1,8,1) each have rotational symmetry through
180° about their midpoints (black dots in Ficure 2). It may be the only plane-tiling
polyomino with a serial boundary, but we are unable to prove this.

Puzzle: Can you tile this polyomino with thirteen L-shaped tetrominoes?

It is easy to prove that N must be a multiple of 4. One way is to consider N rook
moves on a bicolored chesshboard. Assume without loss of generality that the rook
begins on a black cell and makes its first move horizontally. To close the path, its final
move must be vertical, and end on a black square. Because moves of odd and even
length alternate, the sequence of colors at the end of each segment forms the
repeating sequence: WW BB WW BB.... The rook returns to a black cell, after a
vertical move, if and only if the number of moves = 0 mod 4.
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FIGURE 1
The only known serial-sided polyomino that tiles the plane.
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FIGURE 2

Applying Conway's criterion to prove that the polyomino tiles the plane.

Experimenting on graph paper will quickly convince you that there is no serial
isogon of order 4. (You might call this “a 4-gon conclusion”.) We have exhibited one
of order 8. After the computer program exhaustively plotted all serial isogons of
orders through 24, a surprising fact emerged. No serial isogons were found except
when N is a multiple of 8. This led to several proofs of the following theorem:

For any 90-degree serial isogon, N must be a multiple of 8.

Assume that a closed path begins with a unit move to the east, and that moving east
or north is positive, and moving south or west is negative. A path can be uniquely
described by placing a plus or minus sign in front of each number in the sequence of
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moves to indicate the direction of the move. For example, the order-8 polyomino has
the following formula:

+14+2-3-4-5-6+7+8.

It is obvious that if the path closes, the sum of all horizontal moves—the odd
numbers—must be zero, otherwise the path will not return to the vertical lattice line
that goes through the starting point. Similarly, the sum of all vertical moves—even
numbers—must be zero or the path will not return to the horizontal lattice line going
through the origin point. The sum of all the numbers will, of course, also be zero.

We know that N is a multiple of 4, say 4k. Then the north-south moves are
the even-length ones, 2.4,...,4k. The total north-south distance is therefore
2(1 + 24 - -+ +2k) =2k(2k + 1). Half of this, k(2k + 1), must be north and half of
it south. But if k is odd, this distance is odd, and cannot be the sum of even-length
moves.

We can make this clearer by taking N = 12 as an example. Even numbers in this
path’s formula (2,4,6,8,10,12) add to 42. If the formula describes a closed path, the
sum of the positive numbers in this sequence must equal 42/2 = 21. But no set of
even numbers can add to the odd number 21. Consequently, no formula can be
constructed that will describe a closed path of order 12.

With reference to the grid, this tells us that if N is a multiple of 4 but not of 8, the
last segment of the path, which is vertical, cannot return to the horizontal lattice line
that goes through the path’s origin point because the sum of the positive segments
going north cannot equal the absolute sum of the negative segments going south. The
path’s end will always be an even number of units above or below the zero horizontal
line.

Is there a coloring pattern that proves the N =0 mod 8 theorem? Yes, the simple
coloring shown in Ficure 3 (found by the second author) will do the trick.

Start a path on any black cell, then make your first move horizontally in either
direction. Regardless of your choices of how to turn at the end of each segment,
the colors at the ends of segments will endlessly repeat the sequence: WWWWWWBB,
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FIGURE 3
A bicoloring of the grid for proving that N is a multiple of 8 for all orders of closed serial paths.
The order-8 polyomino is shown in outline.
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WWWWWWBB, WWWWWWBB, ... . The path will enter a black cell (which it must
do if the path closes) in a direction perpendicular to the first segment if and only if
the number of moves is a multiple of 8. Shown in the illustration is the path that
outlines the order-8 tiling polyomino.

Although all closed paths have formulas in which the total sum of the signed terms
is zero, this is not sufficient to produce a formula for a path. A serial path closes if and
only if the even numbers in its formula add to zcro, and likewise the odd numbers.
(Nonserial closed paths may meet this proviso, and be of any order of 4 or greater that
is a multiple of 2. The formula +1 + 2 — 1 — 2, for example, describes a closed path
that outlines a domino.) If this proviso is not met, the formula gives the location of the
path’s final point with respect to the origin. If the sum of the signed even numbers is
positive, it gives the number of units where the path ends above the origin; if
negative, it gives the number of units below the origin. Similarly for the sum of the
signed odd numbers. If positive, it gives the end point’s distance east of the origin; if
negative, the distance west.

If the signs of all even numbers are changed, or if the signs of all odd numbers are
changed, it reflects the isogon along an orthogonal axis. If all signs are changed, it
rotates the isogon 180 degrees.

We have shown that N =0 mod8 is a necessary condition for a closed serial path.
Is it also sufficient? Yes. Here is one way to arrange plus and minus signs in a formula
that will always describe a serial isogon: Put plus signs in front of the first and last
pairs of numbers. Put minus signs in front of the next to last pairs of numbers at each
end, and continue in this way until all pairs of numbers are signed. This ensures that
all even numbers add to zero, and likewise all odd numbers, therefore the formula
must describe a closed path. It produces, for instance, the unique formula for N =8.
Applied to N = 16 it gives the formula +1+42-3-4+5+6-7-8-9-10+
11+ 12— 13— 14 + 15 + 16, which describes the isogon at position O,Es in
Ficure 4. ’

Is there a procedure guaranteed to construct a serial isogon for any order
N =0 mod 8 that outlines a polyomino? The answer is again yes. Each formula has 8n
numbers. If we make positive all numbers in the first fourth of the formula, and also
in the last fourth, and make negative all numbers in the half in between, we produce
a serial isogon. Applied to N =16, it gives +1+2+3+4-5-6-7-8-9— 10
—11—12 + 13 + 14 + 15 + 16, which describes the polyomino at O, E, in FiGURE 4.
The polyomino generated by this procedure always takes the form of a snake that
grows longer as N increases. Ficuni 5 shows the polyomino snake for order 32. A
diagonal line, running from the extreme corners of the snake’s head and tail, going
between all the interior corners, is almost, but not quite, straight.

We now turn to the more difficult task of enumerating all possible serial isogons
(not counting rotations and reflections as different) for a given isogon. As mentioned
earlier, there is only one isogon of order 8, the tiling polyomino. For N = 186, the
computer program found the 28 solutions shown in Ficure 4. Note that only three
(0,E,,0,E,,0,E,) are polyominoes. For N =24, the program produced 2,108
distinct isogons, of which 67 bound polyominoes. For N = 32 the program’s running
time became too long to be feasible.

No formula is known for enumerating all distinct serial isogons of order N, or for
counting the polyominoes of a given order. However, there are procedures by which
the number of isogons can be counted by hand to a value of N that goes well beyond
N =24,
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The snake polyomino of order 32.
FIGURE 4 The diagonal line separating the snake’s two
The 28 distinct order-16 serial isogons of 90°.  sides is almost, but not quite, straight.

Here is how the fourth author describes one such procedure:
Suppose N = 16; it's easy to see that this quantity is the constant term if you
expand the algebraic product

(x—l +xl)(y—2+y2)(x-3+x3) ,,,(x—l5+x15)(y—16+y16)

into powers of x and y. To get the number of ways for the odd sum to cancel, we
want the constant term of

(x7 "+ (x+2%) o (275 + 1),

which is the coefficient of x!*3¥5% =~ +15 = x64 jj

(1+x2)(1+x%) - (1+x),
which is the coefficient of x? in
(1+x)(1+x3) - (1 +x%),

which is 8. To get the number of ways for the even sum to cancel, we want the
constant term of

(y—2 +y2)(y—4 +y4) i (y—lﬁ+ ylﬁ)’
which is the constant term of

(v +y)(y 2 +y?) - (y=*+y®),
1424 o +

8= y%
(1+ yz)(l + y“) w4 ylﬁ),

which is the coefficient of y
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which is the coefficient of '® in

(I+y)(X+y?) - (1 +y7),

which is 14. So the total number of closed paths is 8 X 14; divide by 4 to get 28 closed
paths that are distinct under reflectional symmetry. Suppose we start with +1 + 2;
then the four ways to do the odd numbers are

0,=+14+3-5-7-9-11+13+15
Oy=+1-3+5-7-9+11-13+15
O,=+1-3-5+7+9-11-13+15
O,=+1-3-5+7-9+11+13-15

and the seven ways to do the even numbers are

E,=+2+4+6+8—-10—-12—-14+16
E,=+2+4+6-8+10—12+14-16
E,=+4+2+4-6+8+10+12—-14—-16
E,=+2+4-6-8-10—12+14+16
E.=+2—-4+6—-8—-10+12—-14+16
Eg=+2—-4—-6+8+10—12—-14+16
+2-4—-6+8—-10+12+ 14— 16.

wut

E-

[

The three serial polyominoes are the snake O,E, and two other solutions O,E,,
0, E,. (It's curious that only O, can be completed. The case O, E, almost works, but
that path gives a degenerate polyomino whose width is zero at one point. Paths O3 E,
O,E,, and O,E, fail in the same way.)

In general when N =8n, the number of closed paths is the product of the
coefficient of x®" in

(1+2)1+x2)(1+2%) - (L +x* 7)1+

and the coefficient of y*"**2 in

(L+y)(L+y)(1+y?) - (L+y™ (A +y™).

These numbers, for small n (divided by 2 to remove symmetry), are

N n odds /2 evens /2 product

8 1 1 1 1
16 2 4 7 28
24 3 34 62 2108
32 4 346 657 227322
40 5 3965 7636 30276740
48 6 48396 93846 4541771016
56 7 615966 1199892 739092675672
64 8 8082457 15796439 127674038970623

It seems certain that the vast majority of these isogons will not bound polyominoes.
The paper of Bhattacharya and Rosenfeld [3] is concerned with the problem of
avoiding self-intersections in isogons: they treat the general problem in which the
sides are of arbitrary length, not just our particular case of consective integers.
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Here is how the third author has made an asymptotic estimate of the number of
serial isogons:

We have seen that the number of isogons of a given order is the product of half the
number of possible choices of sign in +2+4+6+ -+ £(8n—2)£8n=0 with
half the number of choices of signin +1+3+5+ -+ £(8n—3)+8n=0.

The first of these is the number of partitions of half of the sum

2+4+6+ - +8n

into distinct even parts, of size at most 8n, i.e., the number of partitions of n(dn +1)
into d distinct parts of size < 4n. Subtract 1,2,...,d from these parts, now no longer
necessarily distinct, of size < 4n — d. We require the number of partitions of 4n® +
n—(1/2)d(d + 1) into at most d parts, no longer necessarily distinct, of size
< 4n — d. Here d, the number of parts, lies in the approximate range (4 — 2vV2)n <d
<2V2n.

In the same way the second number is the number of partitions of 4n® - (1/2)d?
into at most d parts, not necessarily distinct, of size <4n —d, with d in approxi-
mately the same range as before, but with d necessarily even!

The main contribution comes from d = 2n and the distribution, as we shall see, is
essentially the binomial distribution, so that a good estimate of the whole is obtained
by multiplying this central term by v4mn , except that we halve the “odd” estimate
since only alternate terms (d even) are taken.

From formula (75) in [2] we learn that the number of partitions of j into at most a
parts, with each part <b, is asymptotically equal to

_1_(a+b)¢(j—ab/2)’

T, b a T4 b

where 2, =ub(a +b +1)/12 and $(x) = e=*2 /2.

In both the even and the odd cases, a=d, b=4n—d, a+b+1=4n+1, and
the central term is given by d =2n =a =b for which j=4n®>+n—n(2n + 1) and
j=4n%-2n% ie, 2n® in either case, and j — ab/2 =0, so that the central term is
asymptotically equal to

1 V3 (4n)
Vor 2nVan+1 \2n)°

i.e., asymptotically equal to

ﬁ 24n
2ny2mvdn+1 vdmn

by Stirling’s formula. Multiply by V4mn to estimate the total number of partitions in
the even case, and by half of that in the odd case. The product of the halves of these
numbers (i.e., not counting the E.-W. or N.-S. reflections of the isogons as different)
is thus

if B ) s
8\ 2nv2m Van +1 mn2(4n+1)’

Compare this estimate with the actual values obtained above.
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3x2° 6 /rn(4n + 1)

0.76
27.2
2140
235604
31248698
4666472281
756618728785
130321844073100

PO U LW~ =

The first author has since explored serial isogons on isometric grids. They are of
two types: those with 60-degree angles, and those with 120-degree angles. In the
60-degree case, serial isogons exist if and only if N>9 and N# 1 mod3. In the
120-degree case, they exist if and only if N is a multiple of 6. If cach angle of a serial
polygon can be either 60 or 120 degrees, such polygons exist for any N that is 5 or
greater. In all three cases, the smallest order is unique and is a polyiamond—a
polygon formed by joining unit equilateral triangles. The three are shown in FiGURE
6. Note that the order-5 polyiamond tiles the plane in two different ways, see [4].
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FIGURE 6

The unique, smallest examples of serial isometric isogons. At top is the only order-9 isogon with
60-degree angles. In the middle is the only order-12 isogon with 120-degree angles. At bottom,
shown tiling the plane in two ways, is the only order-5 isogon that mixes the two angles.
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For a time the first author believed that closed serial paths existed only when
angles are 60, 90, or 120 degrees, but then he suddenly discovered such a path with
108-degree angles, the angles of a regular pentagon. More recently Hans Cornet, a
retired mathematician in The Hague, has put forward a proof that at least one serial
isogon can be constructed for every angle « that is a rational multiple of 360 degrees,
that is, when a = 27 n/m radians, with m and n positive integers; see [4].

The first author has also investigated closed paths on square and isometric grids
that have segment lengths in sequences other than the counting numbers, such as
Fibonacci sequences, consecutive primes, and so on. He has produced a whimsical
class of piominoes—polyominoes whose sides in cyclic order are the first n digits of
pi, with zeros omitted. Because the digits of pi are pseudo-random, the task of
enumerating pi-isogons of 90 degrees is related to determining the probability
of self-intersecting random walks on a square lattice. He has even experimented with
closed paths based on the letters of number words. An example is shown in Ficure 7.
It is unquestionably one of the most useless polyomino outlines ever constructed, yet
does it not have a curious charm?
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A coloring pattern on the tiling polyomino
for proving it cannot be dissected into 13
L-tetrominoes.

A 16-sided polyomino, its side determined
by the words for zero through 15.

Solution to puzzle: To prove that 13 L-tetrominoes will not tile the polyomino,
divide the polyomino into alternatively colored vertical stripes as shown in Ficure 8.
No matter how an L-tetromino is placed within this pattern, it will cover an odd
number of cells of each color. Thirteen odd numbers add to an odd number, but the
polyomino has an even number of cells of each color. The tiling is therefore
impossible.

Postscript 5

The appearance of a prepublication version of this paper [Aas resulted in a good
deal of correspondence and misunderstanding. John Leech observes that the argu-
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ment there, showing that N is a multiple of 8, is faulty and exacerbated by the
statement that “even numbers hardly entered into the discussion,” whereas we know
that it is the even lengths that clinch the matter. Leech also gives an argument
involving those gridlines that “quarter” a tetromino, which is equivalent to that of
Ficure 8. The difficulty of printing a complicated formula in a popular article

_resulted in an oversimplification that was no longer an asymptotic formula in the
sense described. Finally, it was implied that calculation of the exact numbers of serial
isogons was more difficult than is actually the case, which prompted several people to
reach for their computers. Ilan Vardi [6] has explained how to compute the numbers
rapidly via the Chinese Remainder Theorem, and he lists the values for N = 400 and
N =1000. Calculations up to N =200 were carried out by Sivy Farhi, 815 S.
California #B, Monrovia, CA and by Pierre Barnouin, Chemin de Stramousse, 06530
Cabris, France, who gave the following values:

16 28
24 2108
22 227322
40 30276740
42 4541771016
56 739092675672
64 127674038970623
72 230857599016 100 16
20 4327972308197 103600
22 83553 176784 1065620300
=[] 16526672 125475 1746697 155
104 33264 1816 16540879268092840
12 62540 174 16093227836 1050223048
120 1429362258586343246 1848 13682344
128 30202349862908 1603279528 134332922
126 645579 14743374327032608546756 10 1824
144 1394 1247 1258939975844577 11273087 1222 10
152 : 30382253492575070925 1636 11638 13831321438
160 66757547570 1956222 19 1676952455074233249232 100
162 1477737884 739369237247 15382248726990532 150405
76 22931659242 107964657022264548538525 1429569 14056
164 738398772978029658506394462962 1065 12300 1927478725
192 166496 15557 10273709724 1262623 1396934 1483976623058 164
200 377259709872056562 198423857053288570232577607987443492
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