New Pathways in Serial Isogons

If I have stood on the shoulders of giants it is because I tried
to see further than they could.
—Isogones of Retsina (c. 666 BC)

A Pretty Polyomino

They say the road to Hell is paved with good inten-
tions. A recent intention of mine was to solve a puzzle
in taxicab geometry. During the attempt, absent-
minded doodling on squared paper led to the inciden-
tal discovery of an arresting figure: a polyomino hav-
ing eight sides of length 1, 2, . . . , 8 units, the latter
occuring in consecutive order around the boundary (see
Figure 1). This was already an interesting find. Yet,
glancing again at my sketch the next day, I was seized
by a wild surmise. A quick trial at once realised hope:
the polyomino has a shape satisfying the Conway cri-
terion [1], and is thus able to pave the plane. Now here
was a prize to celebrate. As below, so above: The road
to Heaven is paved with good inventions.
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Figure 1. Tiling the plane with a serial-sided polyomino.

Lee C. F. Sallows

So I undertook further study of serial-sided poly-
gons—or “golygons” as I playfully dubbed early spec-
imens. Polygons may be defined to include self-crossing
as well as simple figures, and so it is with golygons
when defined as serial-sided, closed paths on a square
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grid; self-overlapping line segments may occur also. It
has been proved that the number of sides in these
figures is always a multiple of eight. Figure 2 shows
some examples. These polygons formed the focus of a
memorable collaboration resulting in a joint article [2].
Interested readers may like to consult this paper, or a
subsequent summary [3]. One let-down, however—
among hundreds of cases discovered, Figure 1 remains
the only instance with the paving property!

mam Beyond golygons, however, we have serial-sided
T isogons (iso, meaning equal; and gon, which means
angled) in general. That is to say, closed serial-segment
paths in which the absolute angle between consecutive
segments (or sides, or edges) is again constant, but not
necessarily 90 degrees. The term ““absolute” stresses
that angle magnitudes are equal; in zig-zag figures the
sign of angles at different corners obviously varies.
Thus, as with right-angled types, given the angle em-
ployed, any serial isogon is completely described by its
sequence of left/right turns, as encountered in travers-
ing the path in natural order of edges. Figure 3 shows

Figure 2. Three “golygons” of order 16. In all, there are 28 some examples using angles of 60° and 120°, the earli-
paths of order 16, the remaining 25 being self-crossing.
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Figure 3. Serial isogons of 60° and 120°. These are all paths on an isometric grid; the figures opposite are drawn to a smaller
scale. (a): N = 9, the shortest path for 60°, a simple polygon. (b): N = 11, the next shortest, a self-crossing path. (c):
N = 12, one of the two self-crossing paths for this order. (d): Repeating a path with new segments of length N + 1, N + 2,
..., produces a “second harmonic” (dotted) of the original (a). (e): The sequence of turns in path (a) is changed from
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est specimens discovered. N is the order of the path, its
number of edges.

Rational Isogons

For what angles can serial isogons be found? A full
answer is still wanting, but an excellent start due to
Hans Cornet is his proof that at least one such path
exists for any angle « that is a rational fraction of 360
degrees, that is, for which o = (m/n) - 360°, m and n
both positive integers. The detailed proof is on the
long side, but at its heart is a simple recipe for con-
structing an isogon using any desired rational angle.
The notions of edge direction and path turning angle
are useful in explaining this.

Consider a moving point tracing an isogon in serial
order of edges. By the direction, d,,, of an edge we mean
that of the point tracing it, and by the turning angle, T,
of the path, we mean the angular deflection entailed in
changing from one direction to the next. This is simply
the (absolute) angle made between any edge and a line

edae
direction

turning
g_ngle

Figure 4. Every edge (1, 2, 3, . . .) points in a certain direc-
tion (d,, d,, d, . . .). The turning angle 7 is the supplement
of the constant angle c.

extending the previous edge, and is equal to [180—q
degrees (see Figure 4). Clearly, if o is rational then so
is 7, implying that there exists an integer D such that
D- 1 is a whole number. D is of course the denomi-
nator in the rational fraction 7, reduced to lowest
terms. Thus, D repeated turns of T degrees to right or
to left equals some whole number of 360-degree rota-
tions, meaning a return to the initial orientation. This
shows that the number of available edge directions in
any rational isogon cannot exceed D, and that they

(f)

(h)

(9)
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RRLRRLRRL to RRRRRLRRRRRLRRRRRL, a variation on Cornet’s rule (see text). (f): N = 24, a = 120°, one of 20 simple
paths from the total of 139 for this order. (g): N = 24, a = 120° a self-crossing path. (h): N = 12, the shortest serial isogon

for 120°. Note how the same figure is contained in (g).
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Figure 5. In a path using turning angle T = 60° = % - 360°,
all edge directions will correspond with the directed sides
of a regular hexagon.

correlate with the sides of a regular D-gon, suitably
oriented. In a path using a = 120 degrees, for instance,
T = 60 or ¥% of 360 degrees, so that D = 6, meaning
that every edge parallels and points in the same direc-
tion as one of the directed sides of a regular hexagon,
appropriately aligned (see Figure 5). Cornet’s construc-
tion rule is now easily explained. Starting with the first
turn from edge 1 to edge 2, form the rational angle a
between successive edges so that every following turn
is to one side only (say, right), excepting turns D, 2D,
3D, etc., which are made to the other side (left). That
is all.

Appending segments in this way, we find that at
length the open end of the first segment is rejoined,
the resultant closing angle then made between the
longest and shortest edges being o, as required. The
final, automatic re-turn from side N to side 1, an inte-
gral multiple of D, will be to the left. But what is the
order of the resulting isogon, and why is correct clo-
sure guaranteed?

Cornet’s Proof (D Odd)

Figure 6 shows an instance of such a path in which N
= 25 and a = 108 degrees. Hence the turning angle 7
= 180 — 108 = 72° or ¥ of 360 degrees, from which D
= 5, implying 5 available directions. As the figure itself
suggests, the latter correspond to those of a regular
pentagon with directed edges all arrowed clockwise. In
general, as already seen, the possible edge directions
for any rational isogon will be those of a similar D-gon,
suitably oriented. Starting anywhere, we label these
dy, dy, . ., dp, around the D-gon perimeter (see Fig-
ure 7).

To understand why the rule must return us to the
starting point, consider a table showing how edges 1,
2,3, ... are allotted to directions d; to ds in Figure 6.
Note the step left after every 4 steps right (ds is of
course adjacent to d,).
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Figure 6. Cornet’s Rule produces a serial-sided isogon. The
angle of 108° implies 5 edge directions, thus: Repeat 4 turns
right, then 1 turn left, until closure, which occurs after 5 x
5 = 25 segments. The turning angle is 72° = ¥ of 360°.

d; dy d3 dy ds

1 2 3 4 5
8 9 10 6 7
5 11 12 13 14
17 18 19 20 16
24 25 21 22 23

65 65 65 65 65

+

As we see, the rule results in column sums that are
equal. But this is to say that the total distance travelled

Figure 7. Starting anywhere, the directions of a regular pen-
tagon are labelled 4, to ds.



in every direction is the same (65 units). The vectorial
sum or final displacement from start to finish is thus
the same in effect as traversing a regular pentagon of
side 65; that is, zero displacement, indicating that the
path ends where it begins.

Furthermore, edge 25, the longest, falls in a column
adjacent to d;; the angle formed with edge 1 is thus 108
degrees, as required. Since the table comprises D rows
of D entries, in this case the order of the isogon is
D* = 25.

It is easy to see why Cornet’s rule must result in a
table with these properties whenever D is odd. Con-
sider the same table with 7 - D subtracted from every
number in the rth row, row 0 being at the top.

dp dy dy dy ds
1 2 3 4 5
5 4 5 1 2
5 1 2 3 ‘4
2 3 4 5 1
4 5 1 2 3

+
15 15 15 15 15

A glance now shows that the columns produced by
the rule are really cyclic permutations of the numbers
1,2, ..., D, added to which are the r terms 0D, 1D,
2D, ... ,(D — 1)D, in every case. Hence column sums
must always agree, their totals equalling (¥2) - D(D* + 1),
as a simple calculation will show.

Likewise, the rows are also cyclic permutations of 1,
2, ..., D. The table is thus a latin square, its bottom
row being completed by an entry falling in column d,.
The correct closure angle is thus assured. In this light,
Cornet’s rule turns out to be not so different from one
of those old-fashioned recipes for making a magic
square!

In the above example T was % of 360°. Suppose,
instead, the constant angle a had been 36°, so that 7
becomes 144° or % of 360°. Using arguments similar to
the foregoing, it is easy to show that column sums,
closure angle, and order all remain independent of the
numerator in 7, provided the denominator (represent-
ing the number of directions, D) is unchanged if the
new fraction is reduced to lowest terms. The following
table illustrates our example. The corresponding iso-
gon, a sorcerer’s pentacle to delight any apprentice, is
seen in Figure 8.

dp dy, dy dy  ds

1 4 2 ) 3
8 6 9 7 10
15 13 11 14 12
17 20 18 16 19
24 22 25 23 21

65 65 65 65 65

Figure 8. An isogon of order 25, using an angle of 36°. This
is a close relative of Figure 6: the same rule applied with the
turning angle now doubled to 144° = % of 360°.

Cornet’s Proof (D Even)

What happens when the number of directions is even?
Cornet distinguishes two cases, D = 4k, and D = 4k +
2; where k is a positive integer. Taking the first, sup-
pose k = 2, so that D = 8, as in the isogon seen in
Figure 9, where 7 is 45 degrees, or % of 360°. The eight
possible edge directions are then indicated by the sides
of a regular octagon, as shown in Figure 10.

As the labelling reflects, here directions appear in

Figure 9. A path of order 32, with @ = 135°. The turning
angle is 45° or % of 360°, so that D, the number of edge
directions (8) is of form D = 4k, k = 2.
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opposite pairs, something that cannot occur when D is
odd. The effect of Cornet’s rule is this new situation is
seen in the corresponding table:

dy dy dy dy & 4, d; d,

1 2 3 4 5 6 7 8

11 12 13 14 15 16 9 10

21 22 23 24 17 18 19 20

31 32 25 26 27 28 29 30
+

64 68 64 68 64 68 64 68

This time column sums are no longer equal, but
those of opposite direction pairs are, and thus cancel
exactly. The distances traversed in direction d;, for in-
stance,are1 — 5+ 11 — 15 - 17 + 21 — 27 + 31 =
0. Hence, as previously, the final vectorial sum is zero,
so again, path start coincides with path finish. How-
ever, the point of path closure, occurring with the first
entry to complete a row while simultaneously occupy-
ing a column adjacent to d;, now falls on segment 32.
Thus, N is no longer equal to D?. I leave it for readers
to prove that when D = 4k, N = D?2.

We are left with the second case, D = 4k + 2. For
simplicity, suppose k = 1, so that D = 6, as in the
isogon seen in Figure 11. The associated edge direc-
tions are represented by the sides of a regular hexagon.
D being even, directions again come in pairs of oppo-
sites. The corresponding table for Cornet’s rule is then:

d dy dy 4 & d
P gk B B

9 10 11 12 7 8

17 18 13 14 15 16
+

27 30 27 30 27 30

Column sums are not equal, and neither are those of
opposite direction pairs. However, the total displace-
ment in alternate directions is the same: For d;, d;, and
d, it is 27-30, for d,, d;, and d; it is 30-27. The net effect
is thus that of circumscribing a regular (D/2)-gon, or
equilateral triangle of side 3, and again equals zero.
The column in which the final entry falls remains as it
was for D = 4k, so that again N = D?/2.

dy

Figure 10. In a regular octagon the edge directions occur in
opposite pairs.
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Figure 11. An isogon of order 18, with a = 120°. The turn-
ing angle is 60° or % of 360°, so that D, the number of edge
directions (6) is of form D =4k + 2, k= 1.

In our examples for even D, T was respectively %8
and ¥ of 360 degrees. Cases for which the numerator
is greater than 1 are analogous to that looked at for odd
D, as in Figure 12, where 7 is ¥3 of 360°.

This completes our survey of Cornet’s proof that a
serial isogon is always constructible for any angle that
is a rational fraction of 360 degrees. Paths generated by
his rule are frequently ornamental flowers (or fire-
works?) as seen in Figure 13.

o
M{\

< D
Y%
A
\

N

>
N

IS
)&)‘

Figure 12. A path of order 32, a = 45°. This is a relative of
Figure 9; 7 is now ¥ of 360°. Cornet’s rule is unaffected by
the change in numerator.



Figure 13. N = 98, a = 51.42% 7 = %a

of 360°.
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Hans Cornet is a retired high school mathematics
teacher in The Hague. His work on serial isogons—
which continues—is pursued entirely from personal
interest; in the absence of this article it would never
have been published. I am sincerely grateful to him for
the privilege of presenting a significant result, and also
for his generous help and kind encouragement
throughout the preparation of this paper. Dank je,
Hans!

Patience is a Virtue

Trivial variations on Cornet’s rule give rise to endless
series of isogons for every rational angle. Two methods
are as follows. 1) On completing a path of order N,
using the same rule, continue adding edges of length
N + 1, N + 2, and so on, up to edge 2N. The resulting
path is a “second harmonic” of the original. An exam-
ple is seen in Figure 3(d). The process is endlessly
repeatable. 2) Modify Cornet’s rule so that the excep-
tional turns fall on 2D, 4D, 6D, etc. (rather than D, 2D,
3D, . . .); see Figure 3(e). Compare Figure 6 (N = 25)
with Figure 14 (N = 50) to see how we go once, then

Figure 14. N = 50, o« = 108°. A variation on Cornet’s rule
yields a doubled version of Figure 6. This is merely the
second term of an infinite series. The process is a close
cousin of the “harmonic” effect seen in Figure 3(d).
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Figure 15. A computer program that plays patience discov-
ered this serial isogon for N = 25 and « = 108°. This is the
same order and angle as Figure 4.

twice around the spiral before changing tack. Again,
the principle can be expanded without limit. Both
methods may be applied alternately in one path.

Even including these variants, however, Cornet’s
rule does not account for every rational isogon, as most
of the examples of Figure 3 attest. Nevertheless, his
approach suggests a way to discover the remaining
paths. Imagine a game of patience played with num-
bered cards and H hats arranged in a ring. Starting
anywhere and discarding in turn, 1, 2, 3, . . . , succes-
sive cards may be dropped into a hat only if each is
adjacent to the last one used. This gives a choice of two
hats each time. The aim is to end with the sum of the
numbers in every hat the same, provided the last card
thrown occupies a hat next to the first one chosen.
Alas, some of us are impatient; a brute-force search by
computer discovered the following 25-card solution for
a game using 5 hats:

hy  hy  hs by ks
1 2 12 11 4
3 6 14 13 8
5 15 16 17 10
7 20 23 24 18
9 22 25

19

21

+
65 65 65 65 65

Here the computer has found a second isogon with
angle and order as in Figure 6 (o = 108 degrees, N =
25), but a different sequence of turns. The associated
path is quite as crooked as its table (see Figure 15). This
shows that although Cornet’s rule yields a winning
strategy at patience, other solutions may exist. Except



in a few instances for small N, however, the number of
solutions extant for each angle/order cannot, as yet, be
predicted. As it happens, Figure 15 is one of three
distinct solutions for this angle and order. Some read-
ers may enjoy trying to find the missing one for them-
selves.

The isogon in Figure 6 has a further remarkable fea-
ture. Recall that 108 degrees is the inside angle of a
regular pentagon. Now look closely at the area
bounded by edges 5, 10, 15, 20 and 25, in the centre of
the figure. It can be proved that the shape outlined
there is indeed a regular pentagon!

After this, readers may not be surprised to learn that
a regular heptagon nestles at the centre of the analo-
gous path using the heptagon angle of 128.57 degrees.
Surprisingly, however, there the pattern ends, for no
other such polygons have been found in comparable
paths for different angles. This curiosity remains to be
explained.

Irrational Isogons

Not every isogon is detectable in the way described
above. Figure 16 shows a 6-sided path using an angle
not expressible as a rational fraction of 360 degrees.
Here o = arc cos (%) radians (= 41.4096 . . . degrees),
as the added parallelogram construction serves to il-
lustrate. Moreover, this is in fact the smallest (shortest
path) serial-sided isogon of all. Its discovery is due to
a computer program that uses a turtle approach to plot
paths as it executes a brute-force search for isogons of
any order. Even for N as small as 6, however, the
number of different possible angles between 0 and 180
degrees remains infinite. What kind of a program can
examine paths for them all? My eventual algorithm
turned out surprisingly simple, although human-
assisted.

In the program, after specifying some N and «, the
order and angle of a path to be investigated, simple
trigonometry is used to determine the positions of suc-
cessive vertices for every possible path, one after an-
other. A path is just a sequence of left/right turns,
represented as a string of N bits: 0 = left, 1 = right.
When called, a standard routine loads an array with a
new permutation of bits that now defines the next path
to be plotted. Starting at the origin of the Cartesian
plane, edge 1 of the path is assumed coincident with
the positive x-axis. On completing a path, the coordi-
nates of the end point of the final segment can be
checked. If these were again 0,0 then we would have a
closed path, and if the angle calculated between the
final segment and the x-axis was again «, then the
sequence of turns under test would give rise to a serial
isogon.

What I did was to accept any test whose end point
lay within a small window centered on the origin, and
whose reentering angle was within 2° of «; then I

—_

Figure 16. The smallest serial isogon of all is an order 6 path
using an angle that cannot be expressed as a rational frac-
tion of 360°: arc cos(¥4). Segments lie along 3 directions.

retested with slightly incremented or decremented
path angle to home in on an apparent solution.

As the last stage, pencil-and-paper work is necessary
to make mathematical sense of the angle empirically
arrived at, and verify it is really a solution. For in-

stance, 41.4096 . . . degrees means little until indepen-
dent reasoning reveals it as arc cos(%4) radians, as in
Figure 16.

In practice, running time on my PC became prohib-
itive for orders above 16. This could doubtless be im-
proved upon, if desired, although examination of
higher N is still within reach if the search is restricted
to a single angle. In the latter case, when the angle is
irrational, a little thought shows that testing paths of
uneven order can be skipped.

Beyond order 6, the next largest isogons brought to
light by the program are two of order 8: one of them
the tiling polyomino, the other a related path, but
again using an irrational angle (see Figure 17). This
fresh discovery prompted a new result covering irra-
tional isogons in which just 3 edge directions, the min-
imum possible, occur. Below we shall prove that in
that case either N = 8k and a = arc cos(4k/(4k + 1)), or
N = 8k — 2and a = arc cos((4k — 1)/4k), where k is an
integer.

refllect

»

squeezed order 8 polyomino

Figure 17. There are two serial isogons of order 8: the tiling
polyomino and this related path using an irrational angle of
arc cos (%). The figure illustrates their relationship. Seg-
ments again exhibit 3 directions.
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Figure 18. In tridirectional isogons the net displacement in
each direction can be represented by three vectors.

Irrational Isogons Using 3 Directions

Consider a tridirectional isogon in which a (and thus )
is irrational. The net displacement away from the path
origin in each direction may be represented by 3 vec-
tors, A, B, C, the angles between them being the same
as those between their corresponding directions, as in
Figure 18. This will be 7 in two out of three cases only,
for otherwise 3t would equal 360°, implying a rational
7. Evidently the remaining angle is 2 - 180 — 21 = 2a.
Thus only one of the three vectors is “central” in bi-
secting the angle between the two others: A. Signifi-
cant inferences now follow from this.

Recall that adjacent isogon edges can only occupy
directions separated by angle 7. Suppose the direction
of edge 1 is that of A, the central vector (later we shall
see that this must be the case). Then that of edge 2 is
B or C. But the angle between B and C is not 7, and so
edge 3 can only belong again to A. Similar logic applies
to succeeding cases, showing that edges of uneven
length must all point in direction A, whose magnitude,
|A|, isthus 1 + 3 + 5 + ... + (N — 1) (recall N is
even). Hence [B| + |C|, the combined lengths of the
residual edges, must equal the sum of the remaining
even numbers.

Moreover, since the path represented is closed, the
sum of the vectors is zero. This means that the result-
ant of vectors B and C must be equal and opposite in
sign to A, and since the angle between B and A is the
same as that between C and A, B and C must be equal
in length, so that |B| = |C|, with [B| + |C| = 2 + 4 +
6 + ...+ 2m = N, and m is an integer.

Now, for what values of N is it possible to divide 2,
4,6, ..., 2minto two groups of equal sum? The ques-
tion is easier to answer in terms of their half values,
every partition of 2, 4, 6, . . . , 2m being mirrored in a
parallel partition of 1, 2, 3, ..., m, whose total is
Yam(m + 1). Bisection of the latter then yields two
groups of sum Yam(m + 1), itself an integer. So, if m is
even (and thus m + 1 odd), m will have to be doubly
even to allow division by 4. Or, by the same argument,
if m is odd, then the doubly even term must be m + 1.
In summary, either m = 4k orm = 4k — 1, where k is
an integer. However, 2m = N, which shows that N =
8kor N = 8k — 2.
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Then, as the perpendicular in the vector diagram
helps to show:

B + CJ

2 - |B| - cos(a)
2 -|C| - cos(a)
(IB| + [Cl) - cos(a)
= |A|, as seen above,

so that
-

B + |C|
1+3+5+...+N-1
2+4+6+...+N

N N?%/4 N
(N+2N4 N+2
arc cos(N/(N + 2));
arc cos (4k/(4k + 1)) when
N = 8k
arc cos((4k — 1)/4k) when
N =8k -2,
which is what we set out to prove.
We have yet to see what happens if edge 1 is aligned
with a non-central vector, B or C. It is easy to see that

cos(a)

Il

from which a
or o

and a

R
o~

N

=

5

St

Figure 19. Tridirectional paths using irrational angles have
orders of form N = 8k and 8k — 2; here k = 2. Above: one of
the 7 paths of order 16; a = arc cos (%5). Below: one of the 4
paths of order 14; a = arc cos(%).



The above scheme is easily verified by summing the
component arithmetic series and comparing partition

.+ (N - 1).

=1+34+5+..

. + Nand |B| + |C|
However, since the first total is greater than the sec-

the roles are then reversed, with |[A| = 2 + 4 + 6 +

totals. In cases of 3 directions, therefore, we are able to
create and count paths for every possible order.

ond, a zero vector sum would be impossible, even if 7

As might be expected, not every irrational isogon
discovered by computer is tridirectional. Research into

these more complicated types continues.

s of such
k = 2the

Hence, no such path exists.
computer finds four of order 14 and seven of order 16,

Figures 16 and 17 show the single instance
isogons for k = 1; what happens beyond? For

were 180°.

Pretty Polyiamonds

these two totals reflecting the number of distinct par-

. 16 into two sub-

sets of equal sum: the edges assigned to directions B
and C; see Figure 18. More generally, a partition

scheme yielding solutions for every k is as follows:

y .

.,14and 2, 4

titions of 2, 4, . .

Variations on the serial-sided theme will have occurred

, sequences of

-lengths listen to different
etc. Paths in higher dimensions also await in-

laws: arithmetic or geometric series

to readers: paths whose edge
primes,

f serial planar

I would like to mention one further

vestigation. To conclude this survey o
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Figure 20. The serial-sided polyiamonds of order N < 10.
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Figure 21. Polyiamond analogs of the order 8 tiling polyo-
mino.

plore is that of serial-sided shapes on an isometric grid,
or in other words, serial polyiamonds, which are figures
that can be tiled with equilateral triangles.

Consider first the more general case of closed serial
paths, including self-crossing paths, on an isometric
grid. Three straight lines cross symmetrically at every
node, which means that the angle between successive
path segments can be 60 or 120 degrees. Hence, paths
are of two kinds: isogonal (using either 60 or 120 de-
grees), and what I call bisogonal (those mixing both
angles). Then, serial-sided polyiamonds correspond to
the simple polygons of both types.

The fact that every 60 or 120 degree isogon (such as
those in Figure 3) is a path on an isometric grid forms
the basis of two neat results, due to Martin Gardner: 1)
For an angle of 60 degrees, no isogon exists when N =
1 modulo 3 (they seem to exist for all other N > 8); 2)
for any isogon with an angle of 120 degrees, N is a
multiple of 6. The proofs are not very difficult; one
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Figure 22. The smallest serial-sided polyiamond tiles in
two ways.

hopes they will appear elsewhere. On the other hand,
the problem of enumerating 60°/120° paths for different
orders remains unsolved.

Computer searches for closed paths on an isometric
grid are made easy through the ability to measure
movement along three (lattice) coordinates, I, ], K. The
turns in a bisogonal path are encodeable as 4-valued
elements: 0 = left 60°, 1 = right 60°, 2 = left 120°, 3 =
right 120°, say. Integer variables I, ], K are updated
after each edge. Exhaustive testing of turn sequences
will thus discover every serial path for a given N.

A program of this kind has identified 18 serial-sided
polyiamonds through order 10. Presented in Figure 20,
the set offers an attractive extension to a familar topic
in the recreational literature. Glancing over the group,
note that one of the shapes is an order-9 isogon, the
smallest for 60 degrees. See next how two of the or-
der-8 figures resemble the original polyomino. How-
ever, a moment’s thought shows that square grid



Figure 23. Two tilings by a serial-sided polyiamond of or-
der 8.

paths can always be projected onto a parallelogram
lattice, after which it comes as no surprise that these
shapes tile analogously to the former (Figure 21). More
pleasing is the presence of two genuinely new pretty
polyiamonds, each of which paves in two different
ways (Figure 22 and 23). This soon leads into the realm
of serial-sided tiles, in general. But that is another mes-
sage in a different bottle from yet a further ocean.
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