Alphamagic Squares

Adventures with turtle shell and yew
between the mountains of mathematics

and the lowlands of logology.

by Lee C. F. Sallows

“Eleven + two = twelve + one”

—Martin Gardner

The following article made its de-
but as a talk given this summer at
the unique Eugene Strens Memo-
rial Conference on Intuitive and
Recreational Mathematics and Its
History, held at the University of
Calgary, Alberta. The conference
was designed to mark the Univer-
sity library’s acquisition of the
Strens Collection.

Strens, whose home was at Bre-
da in the south of Holland, devot-
ed most of his life to collecting.
On his death he left behind him
what is probably the world’s most
remarkable assemblage of books
on recreational math topics.

The author, who lives in the
Netherlands and ‘‘stumbled
across this Aladdin’s Cave while
exploring the Dutch mountains,”
contacted Martin Gardner about

it. Together, they were instru-
mental in putting the Strens fam-
ily in contact with Richard Guy
of the Department of Mathemat-
ics at the University of Calgary,
which eventually led to the col-
lection being moved to its new
home.

The history of magic squares is a
venerable one, reaching back into
the legendary past of ancient Chi-
na. So it is that the simplest, old-
est, and most famous square of
all, the so-called Lo shu (shu
meaning writing, document), is
said to have first been revealed on
the shell of a sacred turtle which
appeared to the mythical Emper-
or Yii from the waters of the Lo
river in the 23rd century B.C.
(This is discussed in Camman’s
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The opening page from The Origin
of Tree Worship, a work shrouded
in mystery. Privately published in
England, 1887, a copy was placed

in the British Museum but disap-
peared soon after. Now rediscov-
ered after 98 years, its pages re-
veal—among other riddles—the un-
precedented Li shu, a mathematico-
linguistic formula of demonstrably
magical power. [Courtesy of the
British Library, London.]
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The Origin of Tree Worship

CHAPTER ONE

true origin is to be sought earlier still, in the

reaction of a prehistoric culture steeped in
animism and magic to the newly acquired control over
fire. The benefits conferred by fire blazing upon the
primitive hearth were manifold indeed; an unmitigated
blessing as long as plentiful supplies of fallen bough
were at hand with which to feed the flames. But the
gradual depletion of these reserves would create a
dilemma as men turned their thoughts—and their stone
axes—to the growing glade and blowing greenwood. For
the sources of living timber were protected by tabu;
branch and bole rendered inviolable by a system of
totemism which saw in every tree the abode of super-
natural —possibly vindictive —spirits. Bold would be he

he roots of tree worship can be traced down
into the rich subsoil of Celtic antiquity, but its

who dared incur the vengeance of the tribal totem. But
braver still were those who would endure the long, cold,
lightless nights of winter! Thus would ritual, sacrifice
and magic be pressed into the service of propitiating

these arboreal powers.
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Figure 1. The Lo shu, revealed on
the shell of a sacred turtle, accord-
ing to Chinese legend.

article cited at the end of this
paper.)

The celebrated turtle’s shell
must have looked like Figure 1. In
fact, modern sinology identifies
these signs as a pseudo-archaic in-
vention of the tenth century A.D.,
although indirect references to
the essential structure date from
as early as the fourth century B.C.
Translating them into Arabic nu-
merals yields the square shown as
Figure 2.

As many readers will not need
to be told, the magical property
distinguishing such squares is that
the sum of the numbers in every
row, column, and diagonal is the
same; in the Lo shu this magic
constant is 15. The literature on
these recondite curiosities is
amazingly prodigious and deeply

Translation of

Figure 1
4 9 g
' '5 7
"~ AU, S

Figure 2
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ramified, not to say widely and
haphazardly dispersed. It is clear
that the spell cast by the elegant
symmetries reflected in these in-
terlocking number patterns has
held countless devotees in thrall,
eminent mathematician and low-
liest layman alike. Hardly a turtle
shell has been left unturned in
exploring variations on the cen-
tral theme, so that articles and
even books abound devoted to
special categories of squares, as
well as magic triangles, rectangles,
circles, stars, antimagic squares,
prime-number squares, multi-
plicitively magic squares, magic
cubes, N-dimensional arrays, and
so on. Not least in adding spice to
the subject is the variety of simply
stated yet peculiarly intractable
mathematical problems they give
rise to. Nobody knows, for in-
stance, how many distinct consec-
utive-number specimens there are
for any square larger than 5X5.
Barely credible, but true!

A new development of unex-
pected relevance to this topic is
the recovery during 1985 of a
unique book, bringing to light an
extraordinary parallel between an
episode in the reign of King Mi, a
historically dubious late-fifth(?)-
century tribal chieftain of North
Britain, and the Chinese legend of
the Lo shu. Apparently misplaced
in or about 1888, this book, The
Origin of Tree Worship, a private-
ly printed nineteenth-century
work of scholarship devoted to a
study of Druidical practices and
the spread of the yew cult among
Celtic and Germanic peoples in
pre-Christian Europe, recently
surfaced again during a reorgani-
zation of bookshelves at the Brit-
ish Library (formerly the British
Museum) in London.

Mysteriously abandoned after
preliminary publication in a
sparse edition of just six sample
copies, the rediscovered volume is
in all probability the only surviv-
ing exemplar (see photo), and its
reappearance after nearly one
hundred years has caused a con-

siderable ripple in philological
circles. The reason for this lies in
a wealth of unmistakable internal
evidence showing that the author
must have been borrowing from
medieval manuscript material
previously believed lost in the fire
that destroyed so much of the fa-
mous Cottonian collection of
priceless early English docu-
ments, while it was housed at Lit-
tle Deans Yard, Westminster, in
1731. As such, The Origin of Tree
Worship is presently the subject of
minute scrutiny by experts and,
quite apart from the urgent ques-
tions thrown up by the prove-
nance of its cited material, is al-
ready shedding light in several ar-
eas of paleographical research.
Readers interested in further de-
tails (including a review of con-
flicting evidence as to the real
identity of its author) may care to
consult the British Library De-
partment of Occidental Manu-
scripts Internal Report No.
2704/1729, as well as the forthcom-
ing article by J. Allardyce and M.
Sandeford, scheduled to appear
in the Journal of English and
Germanic Philology.

Returning to our present pur-
pose: among other previously un-
recorded Celtic myths alluded to
in The Origin of Tree Worship is
an account of a pilgrimage made
by King Mi to a sacred grove in
Eohdalir, Valley of the Yews,
where, following pious obser-
vance of symbolical pagan rites, a
runic charm or magical formula is
revealed to him, scored on the
bole of the hallowed Li, eldest of
yews. Runes, it will be recalled,
are thin angular characters suited
to incision on wood, stone, metal,
and so forth; their employment by
primitive (chiefly Scandinavian)
tribes was seldom for practical
purposes of communication, but
almost always bore magico-ritual-
istic significance. An excellent
survey of the subject is Runes: An
Introduction by R. W. V. Elliott
(Manchester University Press,
1980).
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Figure 3. The runic charm revealed to King Mi, scored on the bole of Lj, eldest of the sacred yew trees.

As an amateur runologist fortu-
nate enough to have been granted
a privileged view of this exciting
find (a facsimile edition is pres-
ently in preparation), I was natu-
rally drawn to deciphering the ru-
nic charm reproduced in the
book along with the narrative of
King Mi (Figure 3). It is a mark of
the great advances made in pale-
ography over the intervening years
that a problem that seems to have
baffled solution in 1887 (the date
of publication) offers little diffi-
culty to the modern investigator.
In Figure 4, modern usage re-
places Old English orthography.

At first I was much puzzled by
the pattern of cardinal number-
names thus disclosed, and it was
only on writing them out in more
perspicuous form that under-
standing eventually dawned (see
Figure 5). As the reader can easily

verify, the sum of the three ele-
ments occurring in every row, col-
umn, and diagonal is the same: 45.
What we have here, in other
words, is a familiar 3 X 3 magic
square.

Fascinating as this parallel with
the Lo shu legend is, however, it
remains worth noting that al-
though distinct, the nine numbers
appearing in the runic square fail
to form a consecutive series, as in
their Chinese counterpart. Never-
theless, the Li shu (as I suppose it
can hardly otherwise be called)
bears closer examination. Seeking
for something to warrant a super-
natural manifestation on a sacred
yew tree, and having already been
prompted through registering a
small coincidence while translit-
erating the runes, I soon discov-
ered that the number of runes—
and, thus, by chance, the number

of modern English letters—mak-
ing up the three words used in
every row, column, and diagonal
is also identical: there are twenty-
one! (The coincidence between
modern and archaic word lengths
will seem of less moment to read-
ers familiar with the normal
course of etymological develop-
ment from Old English forms: two
= twa, five = fifé, eight = eahte,
twelve = tuoelf, and so on).
Moreover (and here I began to
appreciate the potency of this sin-
gular thaumaturgical device),
writing out the rune or letter totals
associated with each number-
name not only results in a second
magic square, the numbers now
emerging do indeed comprise an
unbroken consecutive series (Fig-
ure 6). Furthermore, since no En-
glish cardinal number-name, old
or new, is shorter than three let-

Figure 3 in Modern English ... and in Numerals
Five Thoentp-tivo Cighteen 5 22 18
Toenty-eight Frifteen Thoo 28 15 2
Thoelbe Cight Thoenty-fibe 12 8 25
Figure 4 Figure 5
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ters—the smallest number occur-
ring here—this square even em-
bodies the lowest consecutive se-
quence imaginable on purely
lexical grounds. ‘
Astonished by this unlooked-
for revelation of the secrets inher-
ent in the Li shu, I quickly turned
back again to The Origin of Tree

Letter Counts
from Figure 4

4 9 8
11 7 3
6 5 10

Figure 6

General Formula

Worship in hope of finding fur-
ther details. Alas, nothing of in-
terest is to be found there, save a
bare record of the legend quoted
as evidence of yew practices in
Northumbria at that period, to-
gether with a conjecture that the
formula had probably been cred-
ited with healing powers and
would have been worn on talis-
mans to ward off evil. Nor has any
external enquiry succeeded in
eliciting further amplification.
The Li shu, it appears, exists as a
unique, isolated prototype, and
any subsequent developments it
may have given rise to have long
since been lost to us, buried in the
dust of history.

Obscure as its origins remain,
clearly the rediscovery of this fan-
tastic formula immediately pro-
vokes a host of tantalizing ques-
tions and contingencies quite in-
dependent of the historical,
mythological, philological, and,
indeed, criminological issues
raised in connection with The Or-
igin of Tree Worship itself. In
fact, as the following will show,
the Li shu furnishes a point of
departure into an exciting new
genre, a hitherto undreamed-of
field, perhaps best described as a
kind of recreational department
of Computational Linguistics. [
refer to the exploration of alpha-
magic squares.

3 X 3 Alphamagic Squares

Alphamagic is the word I use to
describe any magic array (whether
square, rectangular, triangular,
N-dimensional, etc.) that remains
magic when all of its entries are
replaced by numbers representing
the word length, in letters, of their
conventional written names (thus,
one becomes 3). Plainly, a square
that is alphamagic in one language
need not be so in another (and
nonalphabetic languages are irrel-
event in this context). It will be
convenient to refer to the letter-
count of a number-word as the
logorithm—or log, for short—of
the original number (logos =
word, arithmos = number). Log-
orithm should not be confused
with a similar word coined by a
Scotchman called Napier in 1614.
Where unstipulated, ‘“‘natural”
logs or loge(ngiish) Will be assumed;
hence log 15 + log 3 = logfrench 69
since 7 + 5 = 12, the number of
letters in soixante-neuf.

By magic I shall mean any ar-
rangement producing a constant
sum along its various orthogonals
and diagonals, regardless of
whether the elements involved are
distinct or not. Naturally, a
square showing repeated entries is
less interesting than one in which
all are different. The order of a
square refers to its size—the num-

a+b a-b—c a+c
a—-b+c a at+b—c
a-c¢ at+b+c a—-b
Figure 7
0 1

A Table of Natural Logs

23456 7 8 91011121314151617181920212223242526272829303132333435.
4 335 44355 4366887798869 911101091111106 9 9 111010...

T IS8

-

numbers

logorithms

Figure 8. The natural numbers 0 through 35 together with their logorithms. Connecting lines indicate triples in which
both numbers and logorithms form regular arithmetic series.
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ber of cells on a side. The Li shu is
thus an English alphamagic
square of order 3, having as addi-
tional properties that its logo-
rithms are distinct, consecutive,
and minimal (that is, they com-
prise a set of the smallest possible
non-alike logorithms existent in
English). Order-1 and order-2
squares need not detain us, as a
moment’s consideration will
show. With these few conventions
established, we are ready to pur-
sue the main theme.

As a tentative entry into the un-
familiar terrain, it is natural to
wonder if there are any 3x3 al-
phamagic squares other than the
one produced above. Useful in
this connection is the general for-
mula for order 3 shown in Figure
7 (and due to Edouard Lucas),
since both numbers and logo-
rithms in an alphamagic square
must satisfy the relations it exem-
plifies.

Note that the three elements on
each straight-line bisector through
the center form a set of four 3-
term arithmetic series (that is,
they show a constant difference
between adjacent terms:
[a—b+c]—a = a —[a+b—c], for
instance). Then one obvious ini-
tial step is to search for arithmetic
triples whose logorithms share the
same property.

Figure 8 lists the cardinal num-
bers from 0 to 35 together with
their English logorithms. Taking
for illustration a center number C
of 15, consider in turn arithmetic
triples formed by C and its equi-
distant neighbors C—1 and C+1,
C-2 and C+2, and so on. Note
down those cases in which
log(C—N), log C (=7), and log(C
+ N) also form arithmetic triples.
When N = C we can go no further,
since C — N = 0. By now we shall
have a list of pairs of associated
arithmetic triples (Figure 9).

If there are any 33 alphamagic
squares with a center number of
15 (and we already know there is
one), at least four of these five
cardinal-number triples must ap-

pear in it: one along each straight-
line bisector, including diagonal
bisectors.

Selecting now the first two tri-
ple-pairs on the list for closer
scrutiny, write them into the diag-
onals of corresponding matrices
(Figure 10). The choice of diago-
nals here is not critical; alterna-
tive linear cell-groups might be
used. We argue that since the lat-
ter will have to be occupied by

two of the listed cardinal-number
triples, testing each pair in turn in
these positions will comprise an
exhaustive check of all possibili-
ties. Note that changing the order
in which a given pair is written
into the diagonals merely creates
rotations or reflections of the
same configuration.

Referring back to the general
formula, we find that the magic
constant of any square is always 3

Cardinal Numbers

12 (518

11 15" 19

8 15 22

5 15 25

255 L 528
Figure 9

English Logorithms

w & OO0 O O
N NN NN
©

Cardinal Numbers

English Logorithms

12 11 6 6
15 /4
19 18 8 8
Figure 10
Li Shu
5 22 18 105 122 118
28 15 2 128 115 102
12 8 25 112 108 125
fundamental second harmonic
Figure 11
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ALPHA.BAS

*************************************************************************************************

%0 %% K KW

Program: ALPHA.BAS (GWBASIC)

Purpose: To generate and print out all 3 X 3 alphamagic
squares formable using 9 distinct cardinals in
the range 0 — NMAX. Index numbers and logorithm
squares are printed alongside.

Author: LeeC.F. Sallows

Date: Guy Fawkes Day (November 5th), 1985

190 W T KR

*************************************************************************************************

Array definitions:

A Logorithms of 0 — NMAX (loaded as data)

B Arithmetic triples showing arithmetic logorithms

c Logorithm—triple counterparts to numbers in B
NMAX=109 'In this example

DIM A(NMAX): DIMB(100,3): DIMC(100,3)

Data is loaded into A; A(n) thus corresponding to logn.
Contingent triple CENtre numbers are considered in turn.

FOR I=0 TO NMAX: READA(I): NEXTI
FOR CEN = 4 TO NMAX—4

Starting with the two highest-lowest values possible (BOUND)

and working inwards, A—elements equidistant about A(CEN) are
checked with A(CEN) to see if they formarithmetic triples. If so,
COUNT is incremented, the number—triple is stored in B and its
associated log—triple stored in C.

Provided at least 4 triple—pairs are found we proceed to the next
stage; otherwise reset COUNT and take the next CENtre number.

IF CEN(NMAX—CEN) THEN BOUND=CEN ELSE BOUND= (NMAX—CEN)

IF A (CEN)—A(CEN—BOUND) <>A(CEN+BOUND)—A(CEN) THEN GOTO 380
COUNT=COUNT+1

B(COUNT, 1)=(CEN—BOUND) : B(COUNT,2)=CEN: B(COUNT,3)=( CEN-+BOUND)
C(COUNT,1)=A(CEN—BOUND) : C(COUNT,2)=A(CEN): C(COUNT,3)=A( CEN+BOUND)
BOUND=BOUND—1: IF BOUND<>1 THEN GOTO 340

IF COUNT<4 THEN GOTO 960

B now contains 4 or more arithmetic triples, C their associated
logorithms. Using I and J to address every possible pair of
B-triples in turn, we deal with them as though written into the
diagonals of a 3 X 3 test matrix, thus:

Bl 1= s = e B(Ji5)

CEN

Bi=l) i 2= B(T,5)

Magic—fulfilling values are now calculated for the remaining empty
cells, checking one at a time to see if their logorithms also
satisfy magic conditions in the associated log-matrix.

FOR I=1 TO COUNT-1

FOR J=I+1 TO COUNT

CL=3*CEN-B(I,1)—B(J,1) 'CL = centre left column number

IF CL>NMAX OR CL <0 THEN GOTO 950 'entries must be within limits

IF A(CL) <>3%A(CEN)—C(I,1)—C(J,1) THEN GOTO 950 'check left column log.
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610 CT=3*CEN—-B(I,1)—-B(J,3) 'CT = centre top row number

620 IF CT>NMAX OR CT<0 THEN GOTO 950 'within limits?

630 IF A(CT) <>3*A(CEN)—C(I,1)—C(J,3) THEN GOTO 950 'check top row log.
640 CR=3*CEN—-B(I,3)—-B(J,3) 'CR = centre right column number

650 IF CR>NMAX OR CR<0 THEN GOTO 950 'within limits?

660 IF A(CR) <>3*A(CEN)—C(I,3)—C(J,3) THEN GOTO 950 'check right column log.
670 CB=3*CEN—-B(I,3)—B(J,1) 'CB = centre bottom row number

680 IF CB>NMAX OR CB<0 THEN GOTO 950 'within limits?

690 IF A(CB) <>3*A(CEN)—C(I,3)—C(J,1l) THEN GOTO 950 'check bottom row log.
700

JAIOF 2L Any triple—-pair surviving the above tests gives rise to an

72007 alphamagic square. Duplicate entries may occur, however, but
730 ! in that case it can be shown that CT = B(J, 3)

740 '

750 IF CT=B(J,3) THEN GOTO 950

760 '

THAu= An advantage of the particular algorithm here employed is that
780 ' solutions are discovered in order of their Index No. We print

790 " this, together with the solution (in standard normal form)

800 ' and its logorithm square alongside. TL = Top Left, etc.

810 '

820 INDX=INDX+1: PRINT "No."INDX

830 TL=B(I,1l): TR=B(J,3): BL=B(J,1): BR=B(I,3) 'shorthand

840 PRINT USING "####" ;TL,CT,TR,:PRINT " ", 'matrix formatting
850 PRINT USING "####" ;A(TL),A(CT),A(TR) 'matrix formatting
860 PRINT USING "####" ;CL,CEN,CR, :PRINT " ", 'matrix formatting
870 PRINT USING "####" ;A(CL),A(CEN),A(CR) 'matrix formatting
880 PRINT USING "####" ;BL,CB,BR, :PRINT " ", 'matrix formatting
890 PRINT USING "####";A(BL),A(CB),A(BR) 'matrix formatting
900 PRINT

910 '

920 ' There may be still other squares with the same CENtre number.

930 ' If not, reset COUNT, take next case and search further.

940 '

950 NEXT J: NEXT I

960 COUNT=0: NEXT CEN

970 PRINT "All possibilities up to" NMAX " examined"

980!

990 ! The first 110 English logorithms:

1000 '

1010 DATA 4,3,3,5,4,4,3,5,5,4

1020 DATAS.6,6,8;8,7,7,9,8,8

1030 DATA 6,9 911,101,710, 9l 1Hs-10

1040 PATAG.9,9, 11, 10,0029 11 1110

1050 DATA:5,8,8,10,9,9;8, 10,10 ;8

1060 DATA 5,8,8,10,9,9,8,10,10,9

1070 DATA 5,8,8,10,9,9,8,10,10,2

1080 BAEA T, X010 .12, 0111 , HOF 12 Fas 11

1090 BATAG6.,9,9, 11,10, 10,9, Jils Il 10

1100 DATA6,9,9,11,10510,9,11,11.10

1120 DATALO, 13,13, 15,14,14,15,15, 15,14

1130 STOP

times its center number. There-
fore, if the left-hand matrix is to
be magic, the middle cell in its top
row will have to contain (3X15) —
(12+11) = 22. Similarly, if the
square is to be alphamagic, the
corresponding cell in the right-
hand matrix will hold (3%x7) —
(6+6) = 9. Now, does log 22 = 9?

Yes, it does. So far so good. Con-
sider next the middle cell, right-
hand column. Does log(45—29) =
21—147 Again, yes. Fine; next take
the bottom row. Does log(45—37)
= 21-16? Yes! This is too good to
last; cross your fingers and try the
last vacant cell. Does log (45—31)
= 21-14? No! Yuck. . ..

So far, however, we have con-
sidered only the first pair of tri-
ples, and there remain nine other
such combinations to be tried. A
few minutes with pencil and pa-
per will reward interested readers
with a second alphamagic square,
less elegant than the Li shu but
still having 15 as its center num-

Continued on page 39
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AlphaMagicSquaresOfOrder3

{ t
{ === ============== AlphaMaglc Squares Detection ====================}
{ }
{ design : Lee Sallows }
{ implementation : Victor Eijkhout }
{ }
{ written in }
{ Turbo Pascal Version 3; }
{ Borland International }
{ }
Program AlphaMagicSquaresOfOrder3;
Const Range=109;
Logorithm : Array[0..Range] Of Integer
=(4,3,3,5,4,4,3,5,5,4,

S6- 6 8 BAEsT 9.8 18

6%,.9,9 1L 1051095 185151 005

6,99 11 0% k0 O 8Ia seEl i@

5.8,8,10,9,9,8,10,10,9)

5,8,8,10,9;9,8,10,10,9;

5,8,8,10,:9,9:8,10 30,9

e, 10,1012 s 1] 10 12 2kl

659,95 11 1000078 LS00

659,911, 1051091 E 1 =10,

105 13,1315, 14, 1453 7151514 ;
Var Square : Array[—1..1, —1..1] Of Integer;
Var center,counter : Integer;
Function Min( x,y : Integer ):Integer;
Begin If x<y Then Min:=x Else Min: =y End;
{ 1
{ -t v - = § & 5 = x = = & & & Output of Completed square ==================== }
{ }

Procedure ReportAlphaMagicSquare( ¢,d1l,d2, t,1,r,b : Integer );

Var i,j : Integer;

Begin
Square|[ — l,O] =1; Square[l1,0]:=r; Square[0,—1]:=b; Square[0,1]:=
Square[—1,—-1]:=c—d2; Square[l,1l]:=c+d2;
Square[—1,1]:=c—dl; Square[l,—1]:=c+dl;
Square[0,0]:=c;
Writeln(' alphamagic square No. ', counter);

Fori:;=—1Tod
Do Begin For j:=—1To 1l
Do Write( Square[]j,i]:6 );
Write(' ==> N,
Forij===1sllo 1
Do Write( Logorithm[ Square[j,i] ]1:6 );

Writeln(l &t}
End;
Writeln(' ')
End; {======= procedure ReportAlphaMagicSquare ============}
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{======================= test alphamagicality === ===m=========—=—===— }

Procedure MaybeAlphaMagicSquare( cen,distl,dist2 : Integer );

Var MagicConstant, AlphaMagicConstant,
left,right,top,bottom : Integer;

Function MagicTriple( x,y : Integer; Var mid : Integer): Boolean:
Begin MagicTriple := False;
mid : = MagicConstant —x—y;
If (mid>0 ) And ( mid<=Range ) And ( mid <>y )
{ the third test eliminates trivial solutions}
Then MagicTriple := ( AlphaMagicConstant =
Logorithm[ x]
+ Logorithm[ mid ]
+ Logorithm[y ] )

End;

Begin
MagicConstant : = 3*cen;
AlphaMagicConstant := 3*Logorithm[ cen ];
If MagicTriple( cen—distl,cen—dist2, left )
Then If MagicTriple( cen—distl,cen+dist2, top )
Then If MagicTriple( cen+distl,cen—dist2, bottom )
Then If MagicTriple( cen+distl,cen+dist2, right )
Then Begin counter:=counter+1;
ReportAlphaMagicSquare( cen,distl,dist2,
top,left,right,bottom )

End
End; {======= procedure MayBeAlphaMagicSquare =========}
{ }
{:::::::::::::::::::::: generate squares around ===================== }
{::::::::::::::::::::::: a given center number =:===::===:===::===:::=}

Procedure GenerateSquaresAroundCenter( ¢ : Integer );
Var k,1 : Integer;

Function LogoArithmeticTriple( cen,dist : Integer ): Boolean;
Begin LogoArithmeticTriple : =
Logorithm[ cen ] — Logorithm[ cen—dist ]
Logorithm[ cent+dist ] — Logorithm[ cen ]
End;

Begin
For k:=Min( c,Range—c) DownTo 1
Do If LogoArithmeticTriple( ¢,k )
Then For 1:=Min( ¢,Range—c) DownTo k+1
Do If LogoArithmeticTriple( c,1 )
Then MaybeAlphaMagicSquare( ¢, k,1 )
End; {==== procedure GenerateSquaresAroundCenter =========}

counter:=0;

For center: =4 To Range—4

Do GenerateSquaresAroundCenter( center )
End. {======Main Program========}
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Alphamagic Squares Nos. 1-10

Index Alphamagic Logorithm
Numbers Squares R Squares

No. 1 (5 ) 18 | five twenty-two eighteen 4 9 8
(the L'i shu) 28 15 2 | twenty-eight fifteen two 11 7 3
12 8 25 | twelve eight twenty-five 6 5— 10
8 19 18 | eight nineteen eighteen 5 8 8
No. 2 2515 5 | twenty-five fifteen five 10 7 4
28 SE R 22 | twelve eleven twenty-two 6 6 9
15 72 48 | fifteen seventy-two forty-eight 710 =10
No. 3 78 45 12 | seventy-eight forty-five twelve 12 9 6
42 18 75 | forty-two eighteen seventy-five 8 8 =il
18 69 48 | eighteen sixty-nine forty-eight 9 10
No. 4 75 45 15 | seventy-five forty-five fifteen 11 9 7
424 31 72 | forty-two thirty-one seventy-two 8 9 10
21 66 48 | twenty-one sixty-six forty-eight 9 B0
No. 5 72 45 18 | seventy-two forty-five eighteen 10 9 8
42 24 69 | forty-two twenty-four sixty-nine 8 10 9
4 101 57 | four one hundred one fifty-seven 413" 10
No. 6 107 54 1 one hundred seven fifty-four one 15 9 3
51 7 104 | fifty-one seven one hundred four | 8 5514
44 61 57 | forty-four sixty-one fifty-seven 9 8 10
No. 7 67 54 41 sixty-seven fifty-four forty-one 10 9 8
51 47 64 | fifty-one forty-seven sixty-four 810 9
5 102 58| five one hundred two fifty-eight 4= 13WSL0
No. 8 108" =55 2 | one hundred eight fifty-five two 15 9 3
52 8 105 | fifty-two eight one hundred five | 8 5214
45 62 58 | forty-five sixty-two fifty-eight 9 8 =10
No. 9 68 55 42 | sixty-eight fifty-five forty-two 10 9 8
52 48 65 | fifty-two forty-eight sixty-five 810 9
46 78 101 forty-six seventy-eight one hundredone | 8 12 13
No.10 [130 75 20 | one hundred thirty seventy-five twenty 16 mils 6
49 72 104 | forty-nine seventy-two one hundred four | 9 10 14

Figure 12. The first ten English alphamagic squares of order 3, together with their logorithm squares.
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ber. Try it; one doing is worth a
hundred seeings (old Northum-
brian proverb). But what about all
the other possible center num-
bers? To canvass all cases system-
atically, we need to begin with C
= 4 (a lower number would be
pointless, at least 4 distinct triples
being demanded in any square),
considering in turn C = 5, C =
6, ..., for as long as we wish to
pursue the problem. Clearly, if
ever a task was made for a com-
puter, this is it.

The algorithm sketched above
represents just one possible meth-
od, here incorporated into the
simple Basic program labeled
ALPHA.BAS; a Pascal form, Alpha-
MagicSquaresOfOrder3, was later
prepared by my colleague Victor
Eijkhout (see pages 34-37). Once
the program was running, I was
able to amuse myself over several
weeks by exploring the alphama-
gic realm of order 3. It is a pursuit
I can recommend to others. As
one proceeds, the impression
slowly grows of having ventured
into a space offering almost un-
limited recreational potential.

Besides the two examples al-
ready signalled, are there many
other 3X3 English alphamagic
squares? The answer is yes—an
infinity of them. To see why, con-
sider what happens if each of the
Li shu entries is prefixed with the
words one hundred. The addition
of a uniform constant to both
numbers (100) and logorithms (10)
means that the resulting matrix
(Figure 11) will again be alpha-
magic.

Such a square forms an exam-
ple of what I call the second har-
monic of the fundamental (first
harmonic) square. Using two hun-
dred instead of one hundred
would result in the third harmon-
ic, and so on. Subharmonics
(“zero point . . .”) are conceivable
too, if a little far-fetched. The
harmonic phenomenon thus gives
rise to an endless progression of
alphamagic squares, none of them
claiming our serious further inter-

Alphamagic
Square No. 91

Logorithms of
No. 91

215 372 298 17 22 21
378 295 212 24 20 16
292 218 375 19 18 23

Figure 13

Alphamagic
Square No. 120

Logorithms of
No. 120

249 320 328 19 18 23

378 299 220 24 20 16

270 278 349 17 22 21
Figure 14

est (save perhaps in specialized
contexts) when once their funda-
mentals have been identified.
What about the latter?

Figure 12 presents (in numeri-
cal form) the first ten English al-
phamagic squares of order 3; rota-
tions and reflections of the same
square are counted identical. Al-
phamagics using repeated num-
bers I deem trivial; repetitions in
their logorithm squares (shown
alongside) are not. The ten are put
in sequence firstly by magic con-
stant, which for order 3 is equiva-
lent to ranking by center number,
and secondly by the lowest num-
ber occurring: 2 in the first
square, 5 in the second, and so on.
Extendable to higher orders, this
system attaches a unique index
number to every square, thus pro-
viding a convenient method of
reference. Where the lowest num-
bers of different squares coincide,
ranking will depend on the sec-
ond lowest, and so on. As with

Latin Square

A B C

B|C| A

cC| A B
Figure 15

ordinary magic squares, standard
practice is to reproduce examples
so that the smallest corner num-
ber appears in the top left-hand
position, with the smaller of its
two immediate neighbors oriented
to the top row (middle cell).
Where different squares employ
identical numbers, as may occur
with higher orders, this latter con-
vention will determine rank.
Looking over the list, certain
characteristic features emerge. As
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Greco-Latin Square
A+a B+b C+c
B+c | C+a | A+tb
C+b | A+c | B+a
Figure 16
Log [No. 7]
nine eight ten
ten nine eight
eight ten nine
Figure 17
Log[Log[No. 7]]
4 5 3
3 4 5
5 3 4
Figure 18
Self-Reproducing
Square
4 4 4
4 | 4| 4
ES 4 4
Figure 19
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intuition might have led one to
surmise, No. 1, the primordial
Anglo-Saxon square, being the
smallest and simplest (as well as
oldest) exemplar in the language,
is indeed none other than the Li
shu, the Arkenstone among alpha-
magic gems, unmatched in reveal-
ing consecutive, minimal logo-
rithms. Aside from its harmonics
(Nos. 17, 26, 126, . . .), we have to
ascend to the 9lst square (magic
constants = 885;60) before finding
another consecutive specimen
(Figure 13). There is only one oth-
er such fundamental square
among the 217 alphamagics con-
structible from the English num-
ber-names up to five hundred,
No. 120 (magic constants = 897;60)
(Figure 14).

As we see, increasing word
length entails that neither of
these, nor in fact any beyond, are
minimal. In our language, there-
fore, this is the exclusive property
of the Li shu. The spirit of the yew
tree knew well its errand to King
Mi.

Glancing next at Square No. 7
(Figure 12), one detects the essen-
tial structure underlying the for-
mation of 3X3 alphamagic
squares: the well-known mathe-
matical structure known as the
greco-latin or Eulerian square.
By a latin square of order N we
mean one having N” entries of N
different elements, none of them
occurring twice in any row or col-
umn (Figure 15). A greco-latin
square is one formed by superim-
posing two suitable latins such
that each cell becomes occupied
by a distinct entry. The term gre-
co-latin derives from the once-
common practice of using Greek
and Roman letters to distinguish
their two components; squares of
this kind were first investigated in
the 1770s by the great mathemati-
cian Leonhard Euler. It is easy to
prove that order 3 admits of just
one possibility—the square shown
as Figure 16. (In combining a pair
of latins it is not essential to add
their separate elements, as is done

here, but merely to append the
contents of corresponding cells.)

Comparing this with Square No.
7 (among others, see also Nos. 1, 3,
6, 8, 9), the identity of form is
immediately apparent (you will
note the correspondence: A < 4,
Bo6,Co5,ao4,beol, co).
Rows and columns (but not diago-
nals) in numerical representations
of these squares are therefore
composed of different permuta-
tions of the same set of digits. 1
leave it to readers to show that if a
= (b+¢)/2 and C = (A+B)/2 (the
conditions necessary for magic di-
agonals), the resulting matrix is
isomorphic with Lucas’s formula.
We shall have more to discuss
about greco-latins later.

Staying with Square No. 7 for a
moment, observe that the distri-
bution of 1ls, 4s, and 7s in the
units’ position of every entry has a
curious consequence. Due to the
chance that log 1 = log 2, log 4 =
log 5, and log 7 = log 8, adding 1
to every number in the matrix
results in a second alphamagic
square: No. 9. Squares Nos. 6 and
8 form a similar related dyad.
There are sixteen of these pairs—
some adjacent, some more widely
separated—among the first 100
squares.

The alphamagic properties of
Square No. 7 are not yet entirely
exhausted. Although trivial, the
magic (latin) square formed by its
logorithms (which I shall desig-
nate by log [No. 7]) is worth a
closer look. Writing out log [No.
7] in full, we have Figure 17 as a
result. Viewed thus, a natural
question arises: could log [No. 7]
by any chance be alphamagic, al-
beit trivial, too? The answer, of
course, is yes, the magic constant
of log[log[No. 7]] being 12 (see
Figure 18).

At this point it is difficult not to
wonder whether this second latin
(magic) square is in turn alphama-
gic itself. Alas, repetition of the
same process yields only a semi-
magic derivative. Leaving apart
superficial cases where the initial



logorithm square is made up of
nine identical numbers (a far
from uncommon occurrence), |
have been unable to find any such
instance among the first few hun-
dred English squares. No. 7 shares
its distinction with Nos. 5, 9, and
36.

There is an interesting comput-
er project here that ambitious
readers may like to follow up.
Ideally, of course, we seek a
square giving rise to an unbroken
chain of alphamagic derivatives,
culminating, as any chain even-
tually must do, in a closed loop.
The shortest and most elegant
such alphamagic loop would be a
self-reproducing square—Figure
19. I leave more complicated
loops to the contemplation of in-
terested parties. Lest the ground
to be explored here seem unduly
narrow, bear in mind that we are
under no compunction to remain
in the same language at each stage
in the derivation process. What,
for instance, might be the longest
chain of multilingual alphamagic
links constructible? In any case,
the search for ever more potent
magic “spells” of this and other
kinds soon encourages a glance
beyond the confines of English.

Exotic Squares

The exact number of alphabetic
languages used throughout the
world has perhaps never been es-
timated. Clearly there are many.
Besides those like our own em-
ploying Roman letters, there re-
main others using the Greek, He-
brew, and Cyrillic alphabets. The
work of collecting and collating
alphamagic squares in the various
tongues and dialects opens a wide
(if decidedly recondite) area of
research. One has only to think of
the enormous literature on ordi-
nary magic squares, with its end-
less refinements and ramifica-
tions, almost all of which become
reapplicable to alphamagic
squares, to catch a glimpse of the

French Square No. 14
Quinze Deux cent six Cent quinze
(15:6) (206:11) (115;10)
Deux cent douze Cent douze Douze
(212;13) (112;9) (12;5)
Cent neuf Dix huit Deux cent neuf
(109:8) (18:7) (209:12)
Figure 20
German Square No. 72
Fiinfundbiersig Zweiundsechsig Achtundfiinfsig
(45;14) (62;14) (58;14)
Achtundsechsig Fiinfundfiinfsig Zweiundbiersig
(68;14) (55,14) (42;14)
Zweiundfiinfsig Achtundbiersig Frinfundsechsig
(52;14) (48;14) (65;14)
Figure 21

undeveloped possibilities. My
own peregrinations in the field
having been superficial, I shall
present here only a few examples
of order 3.

Investigating 3x3 alphamagic
squares in different languages
calls for no alterations to the pro-
gram already described, save in
loading appropriate logorithm
data into memory. Having had
some experience in this line of
late, I can report that ascertaining
the correct spelling of foreign car-
dinals is often trickier than one
suspects. Books supposedly sup-
plying this information should be
treated circumspectly (in French,
is 101 cent un or cent et un?).
Typing in word lengths without
introducing errors is another task
requiring perseverance and con-
centration; a subprogram for cal-

culating letter-counts from the
words themselves is advisable.
Without care in this preparatory
phase, interpretation of the print-
out is troubled with doubts.
Taking French as an initial ob-
ject of study, I was intrigued to
discover only a single alphamagic
square using number-names in
the range up to deux cents (200). It
seemed that Gallic orthography
combined with a vigesimal (twen-
ty-based) system of counting to
produce singular effects on the
alphamagic plane. Thinking what
a rare collector’s item this must
represent if it turned out to be the
sole existing French alphamagic
square of order 3, I quickly ex-
tended the search up to trois
cents, only to be glutted with a
sudden deluge of 225 new speci-
mens! Square No. 14 (magic con-

41

FALL 1986




Alphamagic Squares Around the World

Number of
alphamagic
squares
Danish 0
Dutch 6 (4
English 7 [ 9
Esperanto 6 ‘ \T
Finnish 13 ‘
French 1
Gaelic 1 | \
German 221 (77) 72
Icelandic 3 é
Indonesian 1
Italian 1
Latin 0
Maltese 3
Norwegian 12 16)
Portuguese 2 |
Samoan 9
Spanish 14
Swahili 1 ‘
Swedish 5
Turkish 7 ‘ 25 )
Welsh % (7

Translations

g
b
12) (14)

|

2) » (&)

|

K oo
Rl T sgleni 1
(12 (& @ @9

0
1
1
0
1
0
0
4
1
0
0
0
0
3
0
3
1

N\ / TN

4) (6) (8 3

P

(1) 32 3 3

(24) (34) (a1) 5

Pt

(14) (24) (46 8

Total.
number of
translations

Figure 22. What is the total number of alphamagic
squares with cardinals not higher than 100? This chart
shows the answer for squares in different languages
(left). In the column marked “translations,” a circled

stants = 336;27) was the first (of 3)
to show consecutive logorithms
(Figure 20). [In parentheses, the
numerical representation of each
number-word is followed by the
log or letter-count.]

A curiosity worth remarking is
the prevalence of prime numbers
among French alphamagics, a by-
product of frequent un, trois, and
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sept terminations. Even so, a
square composed uniquely of
primes, in this or in any other
language, has yet to be identified.
The urge to uncover specialist
items of this kind will probably
prove a stimulus to logophiles for
some time to come. Serious aficio-
nados will hardly rest until the
Tower of Babel has been ran-

figure is the index number of a given square, with lines
linking numerically identical squares (mutual transla-
tions). Thus, Dutch Square No. 4 is a translation of
German Square No. 77.

sacked from roof to basement.
Following the French experi-
ence, I was better prepared for a
foray into German. After entering
the new logorithms and typing
RUN, within seconds the printer
chirped into life and began spit-
ting out alphamagic squares in a
steady rhythmical tattoo evocative
of massed hordes on the march.



The reason for this regularity was
soon apparent: every one of the
221 squares resulting from num-
ber-names under hundert (100)
employs nine double-digit num-
bers; with few exceptions, the ad-
jacently printed logorithms of ev-
ery one of these nine were the
same: 14.

Many readers, I imagine, will
be surprised to learn of hundreds
of alphamagic squares extant in
three different languages. How is
this prodigality made possible?
The answer lies, simply enough,
in the (inevitable) regularity of
our naming systems for cardinals
higher than twenty, the designa-
tions beyond this point being ex-
act verbal counterparts of their
decimal-digit representations
(twenty-one = 20 + 1, twenty-two
= 20 + 2, and so on). Thus, the
combinative properties of num-
bers are often paralleled in their
logorithms, with the result that
many an unexceptional magic
square (of which there are myri-
ads, contrary to expectation), is
automatically rendered alphama-
gic. In German—an extreme case,
where the words for 1, 2, 3,4, 5, 8,
and 9 all have four letters, and
those for 20, 30, 40, 50, 60, 70, 80,
90, and 100 all have seven—this
factor issues in a rash of uniform
logorithm squares, few of them
revealing any redeeming feature
of interest. A typical example is
No. 72, shown in Figure 21 (magic
constants = 165;42).

The trouble with squares gener-
ated by this parallel effect is their
structural transparency, which
robs them of logological charm.
As logophiles we prize cunning
arrangements exploiting unsus-
pected linguistic fortuity. In al-
most any language, therefore, the
vast majority of squares will fail to
command admiration. In general,
of course, as in Gardner’s marvel-
lous anagram prefacing this arti-
cle, alphamagic elegance resides
in small numbers.

Wearying of pedestrian lan-
guages, | turned next to some of

Latin Square No. 4

CENTUM CENTUM
SgETA'EG"I"NE} SEPTUAGINTA TRIGINTA
BCVIEXVI) QUINQUE NOVEM

’ (CLXXV:XXIV) (CXXXIX:XIX)
CENTUM CENTUM
SEPTUAGINTA TRIGINTA QNL(’D'SEC:’"E\‘E;
NOVEM SEPTEM i
(CLXXIX:XXII) (CXXXVIIXX) ’
TRENGA NOVEMET | o eV
QUINQUE N(?(gﬁg'(':',ff‘ SEPTEM
(CXXXV;XXI) ' (CLXXVIEXXII)
Figure 23

Italian Square No. 3

Ottantasette Cento sessantacinque | Cento ventinove
(87;12) (165;19) (129;14)
Cento sessantanove | Cento ventisette Ottantacinque
(169;17) (127;15) (85;13)
Cento venticinque Ottantanove Cento sessantasette
(125;16) (89;11) (167;18)

Figure 24

the less familiar tongues. Keeping
research within manageable
bounds, surveys were limited to
cardinals in the range up to 100.
Figure 22, a recherché anthology
if ever there was one, records the
numbers of squares discovered in
each case. Totals are generally
modest, which is not to say they
would remain so if the census
were extended further. Raising
the ceiling to 200, for instance,
second harmonics will account
for a doubling in figures,. at the
very least.

A study of squares in foreign
languages can hardly proceed very
far before an obvious contingency

springs to thought. Has anyone
noticed, I wonder, that the Ger-
man square No. 72 given above is a
perfect translation of English
square No. 97 As a matter of fact,
both the German translation of
log. [No. 9] and the English trans-
lation of log, [No. 72] are them-
selves alphamagic, like their origi-
nals; but here we are straying into
a less central, even frivolous hin-
terland. Once glimpsed, of
course, the notion of such a (pri-
mary) correspondence soon urges
systematic comparison among
squares, alphamagic translations
forming yet another branch to ex-
plore in the logological labyrinth.
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Alphamagic Translations between Swedish and Swabhili

Swedish No. 1 Swahili No. 4
Arobaini Sitini Hamsini
Fyrtiofem | Sextiotre | Femtiosju na tano na tatu na saba
(4559) (6359) (5759) (45514) (63;12) (57515)
Sitind Hamsini Arobaini
Sextiosju Femtiofem Fyrtiotre na saba na tano na tatu
(6759) (5539) (4359 ) (67512) (55513) (43514)
Hamsini Arobaini Sitini
Femtiotre Fyrtiosju Sextiofem na tatu na saba na tano
(53;9) (47;9) (65;9) (53;13) (47;14) (65;12)
Swedish No. 2 Swahili No. 6
Arobaini Sitini Hamsini
Fyrtiosex Sextiotre Femtionio nz sita na tatu na tisa
(4659) (63:9) (59:9) (46514) (63512) (59:13)
Sitini Hamsini Arobaini
Sextionio Femtiosex Fyrtiotre na tisa na sita na tatu
(6939) (5639) (4339) (69512) (56;13) (43;14)
Hamsini Arobaini Sitini
Femtiotre Fyrtionio Sextiosex na tatu na tisa na sita
(53;9) (49:9) (6659) (53;13) (49514) (66512)
Swedish No. 3 Swahili No. 8
Arobaini Sitini Hamsini
Fyrtiofem | Sextiosju | Femtionio na tano na saba na tisa
(4539) (67;9) (5939) (45514) (67512) (59513)
Sabini Hamsini Arobaini
Sjuttioen | Femtiosju | Fyrtiotre na moja na saba na tatu
(7159) (57:9) (43;9) (71512) (57;13) (43;14)
Hamsini Arobaini Sitini
Femtiofem | Fyrtiosju | Sextionio na tano na saba na tisa
(55;9) (4759) (6939) (55;13) (47514) (69512)

Figure 25. Swedish alphamagics Nos. 1, 2, and 3 trans-
late into Swahili alphamagics Nos. 4, 6, and 8. Word-

Figure 22 includes a résumé of the
interlingual connections so far es-
tablished.

Two of the languages listed show
no alphamagic squares at all in the
range investigated. Extending ex-
amination of the first of these dis-
covers six Danish squares using
numbers below tohundrede (200).
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Likewise, in the second case, four
squares are brought to light, No. 4
(magic constants = 411;60) being a
rare consecutive-logorithm curio
using odd numbers only (Figure
23). Here the influence of under-
lying latin squares is unmistak-
able. Likewise, early Roman in-
fluence is perhaps responsible for

garhe players will note that in Swahili, sita (6) is an
anagram of tisa (9).

the consecutive logorithms to be
found in Figure 24, a modern Ital-
ian (“I, a Latin”) square—No. 3
(magic constants = 381;45). Note
the constant difference between
corresponding entries at both nu-
merical and logorithm levels in
this geographically related pair.
Oddly, of all the languages so



far examined, there is one which
stands out as peculiarly rich in
alphamagic translations. English
is poor, yielding only the example
previously cited. French, together
with others, has none. Norwegian
and Samoan show three, as do
Swedish and Swahili, an allitera-
tive duo remarkable in that Nos.
1, 2, and 3 in the former translate
into Nos. 4, 6, and 8 in the latter
(as shown in Figure 25). German
yields no less than four, which is
not surprising in view of its total
of 221 squares. And Turkish de-
lights in five, three of them corre-
lating with squares in the most
prolific source of all: it is the
language of the West Britons, the
language of the Bards, Welsh.

Together with its sister tongues
Breton and Cornish, Welsh be-
longs to the Celtic family of lan-
guages, which includes Irish,
Manx, and Gaelic. In former
times the vigesimal system was
current, but except in reading the
clock, present-day Welsh has re-
placed this with decimal usage.
Whether the originators of this
reform had any premonition of its
alphamagic consequences must
remain conjectural, but the ef-
fects have been remarkable in-
deed. Old-fashioned (vigesimal)
Welsh, which I have also exam-
ined up to cant (100), manifests no
alphamagic squares whatever.
Modern Welsh, on the other
hand, rejoices in twenty-six
squares in this range, no less than
eight of them corresponding to
translations of squares in either
Turkish (3 cases), Samoan (2 cas-
es), Spanish, Icelandic, or Norwe-
gian. The latter instance furnishes
a striking consecutive-logorithm
cameo using even numbers only
(magic constants = 216;33); see
Figure 26.

Amazingly, as many as six of
these twenty-six Welsh squares
show consecutive logorithms, a
staggering total considering that of
the remaining 333 squares spread
over twenty languages in Figure
22, there is but a single instance of

Welsh Square No. 12

Chwech deg dau Wyth deg Saith det pedwar
(62;12) (80;7) (74;14)

Wyth deg pedwar Saith deg dau Chwech deg
(84;13) (72;11) (60;9)

Saith deg Chwech deg pedwar | Wyth deg dau
(70;8) (64;15) (82;10)

Norwegian Square No. 12

Sekstito Atti Syttifire

(62;8) (80:4) (74:9)

Attifire Syttito Seksti

(84;8) (72;7) (60;6)

Sytti Sekstifire Attito

(70;5) (64;10) (82;6)
Figure 26

another consecutive-logorithm
square: the Li shu (the French,
Latin, and Italian examples given
earlier lying outside our two-digit
range). None of the Cambrian six
are minimal, however, the short-
est number-name in Welsh con-
taining two letters, while the
smallest series of logorithms oc-
curring runs from 7 up to 15.

A detailed treatment of the un-
numbered curiosities and second-
ary correlations to be found
among alphamagic squares across
the different languages is beyond
the scope of a single article. Leav-
ing the field to enthusiasts who
may like to pursue these research-
es—seeking, perhaps, what I
failed to discover, a triple-lan-
guage alphamagic translation—it
is time to return to English and a
look at the higher orders.

What happens in going beyond
3X3 specimens to larger squares?
Is the way strewn with gems “be-
yond the wildest fantasies of logo-

mania,” or are these really all
“just so much logological junk”?
In Part Il of this article, to ap-
pear in the next issue, investiga-
tion into the higher orders turns
up unexpected challenges to inge-
nuity, with intriguing sidelights
on ‘“‘normal” alphamagics and
the role of “minimal formulae” in
seeking solutions. Programmers
with a taste for recreations are
promised rich pickings in fresh
realms of opportunity.
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