Alphamagic Squares,

Part 11

More adventures with abacus and alphabet,
extending explorations into the untrodden
realms of computational logology.

by Lee C. F. Sallows

Part I of this article (in the Fall
1986 ABACUS) described how the
recent translation of a rediscov-
ered fifth-century Runic inscrip-
tion—the Li shu, long mislaid in
the vaults of the British Library—
led to computer investigation of a
fascinating, novel structure, the
alphamagic square (see Figure 1).
In an ordinary magic square,
such as the ancient Chinese Lo
shu, distinct numbers are cun-
ningly arranged so that their
row, column, and diagonal sums
turn out to be identical. Such a
square would be alphamagic if,
when you replace the usual nu-
merals with their number-names
written out in English (or some
other language), each row, col-
umn, and diagonal is seen to con-
tain an equal number of letters as
well. The letter-count of a num-
ber’s written name is known as its
“logorithm.”

Part I described an algorithm
for detecting all possible 3X3 al-
phamagics. The results of investi-
gations in some thirty different
languages were presented and
many curiosities unearthed, in-
cluding special cases where a
square in one tongue remains al-
phamagic when translated into a
second language. Here in Part 11,

the author pushes on to examine
the higher orders—squares larger
than 3X3—revealing a large area
yet to be explored, with richer
challenges for recreationally ori-
ented programmers.

Higher Orders

Readers who may be regretting
that most of the really worthwhile
nuggets have already been culled
from the alphamagical goldfield
are in for a pleasant surprise.
With the transition from order 3
to order 4, and higher, comes a
concomitant jump in the perplex-
ities confronting our advance,
since hindsight reveals order 3 as a
special, unusually tractable case.
The problems involved having
largely resisted solution thus far,
this higher ground has been bare-
ly surveyed, let alone exhausted.
As a result, it is no exaggeration to
say that for programmers and pen-
cil-owners alike, there remain
rich pickings to be had, given in-
genuity and the will to explore.
Before turning to the difficulties
imposed, however, it will be well
to distinguish between logologist’s
gold and fool’s gold.

In the previous issue we looked
at greco-latin squares, noting ob-
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vious isomorphisms between the
single instance of order 3 and cer-
tain 3X3 alphamagics. [A latin
square of order NV, it will be re-
called, is defined as one compris-
ing N? entries of N distinct ele-
ments, each occurring exactly
once in every row and column.
Greco-latins are formed when two
suitable latin squares are append-
ed so that all the resultant com-
pound entries are unique. Only
one square of 3X3 exists.] For all
higher orders, however, assorted
kinds of greco-latin squares ex-
ist—in particular, those using lat-
in squares in which the N distinct
elements also appear along both
diagonals; see Figure 2.

Now an interesting if obvious
property of these matrices is that
their elements are always replace-
able by appropriate numbers so as
to produce a nontrivial magic
square. In Figure 3, for example,
A=20, B=30, C=40, D=50, a=6,
b=7, ¢=8, d=9, and the magic
constant is 170. A “diagonal gre-
co-latin square,” in other words,
is a recipe for certain types of
magic square. Less prominent
perhaps, but equally true, is that
it yields a recipe for certain types
of alphamagic square too.

There is a neat trick that can be



used for trapping friends into
scornful expressions of baseless
incredulity. You show someone
the Li shu and explain its proper-
ties. While your subject is still
goggling under its impact, men-
tion casually that this is only kid’s
stuff; you yourself have produced
an alphamagic cube of order 8.
“An 8x8x8 alphamagic cube us-
ing entirely different number-
words in every single position?”
comes the unbelieving response.
“Sure,” you reply. “Not only that,
the rows, columns, pillars and di-
agonals are all perfect anagrams
of each other.” Keeping a straight
face at this point, be prepared to
return any searching glances.
Eventually your victim will be
forced into a demurral. “But
that’s nothing,” you retort, “my
cube even retains all its alphama-
gic properties when translated
into French. ...” Puzzlement
mixed with skepticism will now
spill over into indignation at the
leg-pulling. It is time suavely to
produce your piece of paper
showing the three superimposed
order-8 latin cubes.

Order-8 greco-latin cubes, in
fact, offer little difficulty in con-
struction; for example, the inter-
ested reader can consult Latin
Squares and Their Applications
by Denes and Keedwell. Con-
structions of this size being
cu(m)bersome, however, let us
content ourselves with an order-4
square, a literal equivalent of the
last square we examined. In Fig-
ure 4, as promised, orthogonals
and diagonals share the same set
of 39 letters. An anagrammatic,
alphamagic square will also sur-
vive, following translation into
French. Or Swedish. Or Transyl-
vanian. Or. . .,

This is now what I mean by
fool’s gold: easily constructible
greco-latin-based, higher-order
alphamagic squares (or cubes, or
whatever) exhibiting magical
properties beyond the wildest fan-
tasies of logomania. Seemingly
marvelous trinkets that are none-

The Ancient Northumbrian Li shu

Five : Twenty-two : Cighteen 5,225 18
Twenty-eight : SFfifteen : Two 28 15 2
Twelve : Cight : Twenty-five 12 8 25
The Ancient Chinese Lo shu
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Figure 1

Diagonal 4x4 Greco-Latin-Based
Greco-Latin Square Magic Square
A+a B+b C+c D+d 26 | 37 | 48 | 59
C+d | D+c | A+b B+a 49 | 58 | 27 | 36
D+b | Ct+a | B+d | A+tc 57 | 46 | 39 | 28
B+c A+d D+a C+b 38 | 29 | 56 | 47
Figure 2 Figure 3
Literal Version of Figure 3
Twenty-six | Thirty-seven | Forty-eight | Fifty-nine
Forty-nine Fifty-eight Twenty- Thirty-six
seven

Fifty-seven | Forty-six Thirty-nine Twenty-eight

Thirty-eight | Twenty-nine | Fifty-six Forty-seven
Figure 4
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Alphamagic Squares
Nos. 1-10
Index Alphamagic

Numbers Squares

i |52

(the Li shu) 12 8 o5

8 19 18

No. 2 25 15 5

12 1 22

15 72 48

No. 3 78 45 12

42 18 75

18 69 48

No. 4 75 45 15

42 21 72

21 66 48

No. 5 72 45 18

42 24 69

4 101 57

No. 6 107 54 1

51 7 104

44 61 57

No. 7 67 54 41

51 47 64

5 102 58

No. 8 108 55 2

52 8 105

45 62 58

No. 9 68 55 42

52 48 65

46 78 101

No.10 |130 75 20

49 72 104

Figure 5. The first ten English alpha-
magic squares of order 3, with their
index numbers.
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theless just so many gewgaws, so
much logological junk. And the
reason resembles that in the case
of the 3X3 German squares: lim-
pidity robs them of interest; even
casual inspection soon exposes
their cheap reliance on the panto-
graphic coupling between cardi-
nals above 19 and the numbers of
letters in their names. Worse still,
in reality they are nothing more
than tediously redundant diago-
nal greco-latin squares whose sin-
gle identifiers have been expand-
ed into words. All the “magic”
they possess is entirely due to this
underlying pattern, which guaran-
tees (multi-level) uniformity of
row, column, and diagonal con-
tent, no matter what (composite)
entities replace its variables. Sub-
stituting chemical compounds for
the latter, for instance, the distri-
bution of chemical elements re-
sulting would inevitably be magic
as well. Greco-latins are of serious
mathematical interest in their
own right, to be sure, but in the
guise of alphamagic squares they
are only worthless imitations of
the precious metal sought. We
(and our friends) will need to be
wary of these ironic pyrites.
Understand that the defect of
such squares lies not exactly in
their greco-latin morphology per
se, but in their failure to disguise,
to cover the traces of that founda-
tion. A simple card-trick that de-
fies explanation will continue to
excite wonder as long as its mech-
anism remains invisible. The in-
gredient of concealment, of pre-
senting a remarkable effect with-
out giving away how it is achieved,
is a sine qua non in any manifesta-
tion of ‘““magic”: magic minus
mystery means “mundane.”
Consider the Li shu, for in-
stance, which, like any 3 X3 magic
square, is itself an instantiation of
an order-3 greco-latin square—a
characteristic that emerges quite
clearly on checking the pattern of
1s, 2s, 5s, and 8s in its numerical
representation (Figure 5, No. 1).
But traces of that underlying

structure are far from evident in
the real or literal Li shu, a cir-
cumstance due to the usage of
twelve instead of “ten-two,” fif-
teen instead of ‘‘ten-five,” and
eighteen rather than ‘‘ten-
eight”’—usage, be it noted, that
nevertheless preserves the word
length of these more rational al-
ternatives. Here then, in contrast
to the transparency of the order-4
square above, we witness linguis-
tic accident at work in the service
of subterfuge, in helping to cam-
ouflage the tell-tale pattern that
discloses its formative principle.
Therein, in part, resides the pow-
er of the square, its claim to be
Alpha-magic—in the sense of
ranking first.

Bear in mind, incidentally,
that—unlike the case in higher
orders—the nonexistence of any
3x3 diagonal greco-latin square
means that even the most conspic-
uous of order-3 alphamagics (No.
6 is the first) is always something
more than a mere substitution of
number-words for identifiers.
Cardinals occurring along diago-
nals can never be just an alterna-
tive ordering of those composing
every row and column; a = (b+c)/
2 and C = (A+B)/2, recall. [These
are the extra conditions to be sat-
isfied in using the order-3 greco-
latin square as a template for con-
structing a 3X3 magic square.]
Comparison of literal versions of
squares in the figure is instructive
here; note that in terms of con-
cealment, No. 2 betters No. 1.
With our minds now alerted to
these lesser greco-latin alloys, we
return to the search for logolo-
gist’s gold.

Following the successful ap-
proach used in deriving order-3
alphamagics, a good plan now
would seem to be examination of
the general formula for magic
squares of order 4. This we shall
do, but first let us glance at an
intriguing possibility that is
bound to suggest itself to anybody
familiar with traditional magic-
square theory.



Normal Squares

Sometime before 1675 (the date of
his death), a French ecclesiastic,
Bernard Frénicle de Bessy, first
established that there are 880 dis-
tinct normal magic squares of or-
der 4, excluding rotations and re-
flections. By normal is intended
squares using the natural consecu-
tive series 1, 2,3, ..., 16. A com-
plete listing of the 880 was first
published in 1693; ever since, they
have attracted close attention,
forming the subject of endless de-
liberations. The list can be found,
for instance, in Benson and Ja-
coby’s New Recreations With
Magic Squares (Dover, 1976).
Now, could it be that one of these
traditional gems might prove to be
alphamagic too?

Note that this question, natural
enough for order 4 (and higher)
does not arise with order 3, for
which there exists only one nor-
mal square—clearly nonalpha-
magic—the Lo shu. But how is it
to be answered? At first sight the
problem presents no insuperable
difficulty since, in the last resort,
a program could be written to
generate and test every square in
turn, a feasible if artless ap-
proach. However, the same ques-
tion will reappear with order 5,
for which Richard Shroeppel
showed in 1973 that there are ex-
actly 275,305,224 normal squares
(again, excluding rotations and re-
flections), a figure for all practical
purposes ruling out the brute-
force method, on a personal com-
puter at least. (For further details
of Shroeppel’s work, see Martin
Gardner’s excellent account in
Scientific American, January
1976.) How then are we to deter-
mine whether one or more of
these is alphamagic?

Surprisingly, an absurdly sim-
ple solution is to hand. Taking
order 4 to begin with, notice that
in any normal alphamagic square
the words one, two, three, . . .,
sixteen would appear. The total
number of letters involved is thus

Normal squares use the consecutive series
1,2,3,...,16. Could one of these tradi-
tional gems prove to be alphamagic?

3+3+5+ ...+ 7=38l Hence
the magic constant in the logo-
rithm square, the number of let-
ters occurring in all four rows
(and all four columns), must
equal one-fourth of this total. [Re-
member, the logorithm of a num-
ber is the number of letters in its
written name.] But 81 is not divisi-
ble by 4. Therefore there are no
normal alphamagic squares of or-
der 4!

And what of the higher orders?
What, in particular, is the lowest
order N to fulfil the necessary
(but not yet sufficient) condition

n=N?
( z log(,n) mod N=07?
n=1

Alas, not one of those 275,305,224
squares of order 5 could be alpha-
magic. Nor, indeed, will any of
the unknown but assuredly astro-
nomical number of order-6
squares answer. The astonishing
fact is that we have to go up to
order 14 (logorithm square magic
constant = 189) before encounter-
ing an undisqualified candidate!
And there yet remains the little
matter of trying to identify an ac-
tual 14X14 normal alphamagic
square.

The chance of success in seek-
ing for such a monster seems re-
mote in the extreme. Neverthe-
less, the problem is there and,
conceivably, closer attention by
intrepid programmers may dis-
cover means for delimiting the
search so as to bring it within the
scope of practical computer inves-
tigation.

The dispiriting result thus ar-
rived at applies only to English
squares, of course. Perhaps other
languages will admit of lower-or-
der solutions, an unexamined
possibility some readers may like
to explore—a more encouraging
prospect for research, certainly,

than the problem proposed
above. What language, one won-
ders, will turn out to provide the
lowest-order normal alphamagic
square? Alternatively, how about
near-normal squares using con-
secutive numbers, or even just
arithmetic series other than
1-N?? Here are nice opportuni-
ties for chalking up some exotic
“firsts” in computational logo-
logy. In any case, besides dispos-
ing of a seductive contingency,
this digression has furnished a
good example of how even seem-
ingly sticky problems in the al-
phamagic sphere can unexpected-
ly yield to a cunning mixture of
simple arithmetic and logo-logic.
We shall now have need of all the
cunning we can muster; it is time
to turn to the ticklish problems
indicated at the outset.

Formulae for Order 4

Reverting now to our original
course, the obstacles to producing
4x4 alphamagic squares become
clear on examining the general
formula for magic squares of or-
der-4 (see Figure 6). The method
of construction here used, first
described by J. Chernick in 1938
(American Mathematical Month-
ly, Volume 45, pages 172-5) and
applicable to squares of any or-
der, is simple and easy to follow.
Starting at top left and filling in
crosswise and downwards, cells in
the top row are assigned indepen-
dent variables p, q, r, and s; the
magic constant C thus becoming
(ptq+tr+s). t, u, and v follow in
the next row, but if this is to total
C, its final cell must contain
(C—t—u—v). Similarly, with w en-
tered next, the lowest cell in the
left-hand column becomes
(C—p—t—w), following which its
23
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General Formula for Order 4

P q r S
t u v pt+qgtr+s
—t=u-v
w p+t+w qg+r+2s utv
—Ss—Vv_ | —l-U—W -w
gtr+s r+2s+v |pttrutw Hw
—t-w | —t-u-w | —r-s—v =S
Figure 6
Greco-Latin-Based
4x4 Alphamagic Square
Eighteen Twelve Twenty-three Five
(8) (6) (11) (4)
Three Twenty-five Nineteen Eleven
(5) (10) (8) (6)
Sixteen Thirteen One Twenty-eight
@) ) 3) (11)
Twenty-one Eight Fifteen Fourteen
9) (5) (7) (8)

Figure 7. An English alphamagic square of order 4. Entries are transposable
to form no fewer than 144 different alphamagics, every one of them
exhibiting the 24 constellations here discoverable with magic constants

58;29.
A Minimal Formula
for Order 4
A+a B+b C+c D
=% D+e A+b Bt+a+x
D+b+x | C+a B A+c—x
B+c A D+a C+b
Figure 8
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immediate diagonal neighbor can
then be calculated. And so on. At
a later stage, a further variable x
must be introduced, only to be
replaced by a compound expres-
sion later. (Try it; one Northum-
brian proverb is worth a hundred
of the Chinese variety.)

Looking over the formula, a few
features common to all 4X4 magic
squares quickly emerge: the four
corner cells, the four center cells,
the four inside cells of the outer
rows, and the four inside cells of
the outer columns all total to the
magic constant (p+q-+r+s). Be-
yond these simple observations,
however, there is little to be add-
ed. With order 3 we were able to
point to cell groups comprising
arithmetic triples, relying on this
characteristic to narrow the area
searched, but no such restriction
is imposed on numbers appearing
in order-4 (or larger) squares. On
the contrary, in looking at cells
containing single independent
variables, we find that as many as
half the entries may be numbers
selected entirely at random.

It is precisely this freedom, this
absence of stricture in the choice
of elements, that makes for the
greatest difficulty in devising an
alphamagic-divining algorithm.
For without some further qualifi-
cation regarding the properties of
candidate entries (considered ei-
ther individually or in relation to
each other), the range of possible
cases to be examined is simply
boundless. And lacking criteria to
limit the sweep of our search, is
there any more reason to start
looking in one direction than in
another? Leaving aside number-
crunching on a juggernaut scale, |
for one have been unable to come
up with a workable scheme for a
computer program able to sift for
solutions systematically, in any
way analogous to the successful
method evolved for order 3. Of
course, others may yet succeed
where the author has failed.

Defeated, then, in attempting to
comb methodically for larger



squares in general, as well as in
trying to derive an example using
the restricted set of numbers 1-16,
the problem of how to produce
even a single nontrivial 4Xx4 al-
phamagic square of any kind soon
formed the focus of attention.
Readers may judge of the eventual
success of this mission from Fig-
ure 7, less a nugget retrieved from
the ground than a product of pa-
tient alchemy. Appropriately, the
Philosopher’s Stone or essential
catalyst necessary to this synthesis
was revealed in a magical formula
(see Figure 8).

Readers unfamiliar with magic-
square material may be unaware
that general formulae can appear
in a variety of forms. Figure 8, for
instance, is algebraically synony-
mous with Figure 6, the latter-
named being a more redundant
expression of exactly the same in-
formation. In fact, Figure 8, pre-
viously unpublished, is an exam-
ple of what I term a minimal ma-
trix; that is, one in which each of
the eight necessary independent
variables appears no more than
four times in the square, the least
possible number. (For a similar
formula for order 5, see D. E.
Knuth and L. Sallows, Problem
1296 in the Journal of Recreation-
al Mathematics, Vol. 16, No. 2,
1983-4.) (JRM, by the way, should
not be confused with a rival publi-
cation, the sadly maligned Jour-
nal of Rejected Manuscripts.) The
derivation of minimal matrices,
incidentally, is a small chapter of
magic-square theory in itself; see
Figure 9. But how can the mini-
mal formula be of use in creating
alphamagic squares?

For an answer to this, examine
the placing of A, B, C, and D in
Figure 8: a pattern comprising a
diagonal latin square. The same is
true of a, b, and ¢, although here
the fourth expected identifier d is
missing. Notice that no two cells
are alike in content. Besides this,
two poesitions are occupied by x
and two by —Xx, an arrangement
leaving the magic constant

Near-Minimal Magic-Square
Formulae, Old and New

(2% |
A

ey =
AAY
¢ |
YV

2
L J )
vy¥ | @2
EYA
e
IAA

J

T4
A J
o
AEVY
Seh
e

8 =y |5 W

?

J1

it L J1

Arety aty C+x B+ bErx
C. bty B+ x A+a+ty CrXx
B+a+x C+icy b+ x Aty

X A b EX Bty Gt atiy

Figure 9. Above: A diagram found in Agrippa von Nettesheim’s De Occulta
Philosophia (Noviomagus edition), published in Lyons, 1533. Cabalistic
symbols replace a, b, c, . . ., in representing independent variables. Inverted
versions of the same signs correspond to —a, —b, —c, ... (compare the
lower symbols among the cells). Astrological significance was attached to
such magic diagrams. Rewriting the diagram in familiar notation produces
what we recognize as an algebraic formula. Further elementary algebra is
needed to show that the formula is a universal generalization, embracing all
possible 5x5 magic squares. Even so, the number of variable occurrences is
81—12 more than the 69 required in a minimal formula for order 5.

Below: A modern near-miss at a 4x4 minimal formula due to John Horton
Conway, a mathematical deity to whom we owe the gift of Life (taken from a
letter to H. S. M. Coxeter, dated 7 March 1957). The number of variable
occurrences in this square is 40—8 more than the 32 used in Figure 8, the
minimal formula. To see that at least 32 must appear, note that Chernick’s
method (Figure 6) proves that 8 independent variables are involved. A little
thought shows that, however arranged, each of these will have to appear 4
times in the square if it is to be magic.
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Primary Latin Square

Figure 10

First Transform (a=10)

Figure 11

Second Transform (b=11)

18 | 12 3 5

3 1 I L I (5

16 | 13 1 8

Figure 12

Third Transform (c=20)

18 | 12 | 28 5

3125 |19 | 11

16 | 13 1| 28

21 8 | 156 | 14

Figure 13

Alphamagic Reshuffle
of Figure 13

12 | 23 8 | 15

18 51|21 | 14

25 | 19 | 13 1

S [ER6 | 28

Figure 14

(A+B+C+D+a+b+c) every-
where unaffected. Thus, carefully
considered, the message con-
tained in the matrix is that every
4x4 (alpha)magic square is de-
composable into a diagonal greco-
latin square (in which it will turn
out that element d=0, and hence
need not appear)—distorted
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slightly, as it were, by a quantity
corresponding to the simple zero-
totalling pattern of x’s. Then, re-
calling a comparable analysis of
the Li shu, a significant or inter-
esting order-4 alphamagic square
could only be one in which this
predominantly greco-latin sub-
strate had been largely obscured.
And properly assimilated, the ef-
fect of this insight is to suggest an
entirely novel approach to the
construction of such squares: cal-
culated exploitation of linguistic
accident with a view to transform-
ing a trivial, easy-to-construct
square.

It is here that pencil and paper
can often supplement keyboard
and screen, as the process of cre-
ation partly involves experimental
tinkering and serendipity, a factor
notoriously intransigent to algo-
rithmic encapsulation. Detailed
elucidation of the technique is

therefore to some extent an exer-
cise in rationalized reconstruc-
tion. The procedure can be illus-
trated, though, through a redupli-
cation of Figure 7, itself retrace-
able to a primary diagonal latin
(and thus alphamagic) square,
shown as Figure 10.

Here, in effect, we have an in-
stantiation of the general formula
in which A=8, B=1, C=3, D=5,
while a=b=c=x=0. That the
numbers 1, 3, 5, and 8 have not
been selected without careful pre-
meditation is seen from the fol-
lowing relations:

log 1 + log 10 = log 11
log 3 + log 10 = log 13
log 5 + log 10 = log 15
log 8 + log 10 = log 18

Noting that eleven, thirteen, .
can be substituted for tentone,
ten+three, . . . without change to
the logorithms, setting =10 in the
formula produces a slightly less
trivial alphamagic square, Figure
11. We can do better than this,
however, as the linguistic coinci-
dences associated with 1, 3, 5, 8
(arrived at through previous ran-
dom experimentation) have not
yet been exhausted:

log1 + log 11 = log 12 + 3
log 3 + log 11 = log 14 + 3
log 5 + log 11 = log 16 + 3
log 8 + log 11 = log 19 + 3

Here again, setting b=11 in the
formula, the constant difference
between new entries and old at
both numerical and logorithmic
levels results in no adverse effects
on alphamagic properties, as
shown in Figure 12.

Only one more such trick and
we shall have a matrix using six-
teen distinct numbers. Falling
back on an obvious standby, set-
ting ¢=20, our first nontrivial al-
phamagic square of order 4 will
then be complete (Figure 13).

Since x in the formula is still
equal to zero, this final matrix
(Figure 7) is in fact patterned on a



pure greco-latin square. As a con-
sequence, it enjoys certain extra
(alpha)magic properties special to
that structure. In particular, the
four cells in each quadrant and
the four corner cells of each 3x3
subsquare also total to the magic
constants 58;29. By happy coinci-
dence, 58 is exactly twice 29.
Moreover, cyclic permutations
and other transpositions of its ele-
ments mean that the 16 cardinals
here employed can be rearranged
into no less than 144 distinct al-
phamagic squares (not counting
rotations and reflections), every
one of them displaying the 24 al-
phamagic constellations displayed
by Figure 7. This ability to reshuf-
fle can sometimes be used to ma-
nipulate elements into strategic
positions. In Figure 14, for exam-
ple, 1, 14, 18, and 25 have been
maneuvered into the four cells
occupied by x’s in the general
formula.

Having already established
(again, by trial and error) that

log 1 =(0og0)—-1
log 14 = (log 15) + 1
log 18 = (log 17) — 1
log 25 = (log 26) + 1,

setting x=1 leads to a square in
which 0, 15, 17, 26 replace 1, 14,
18, 25—a transformation marred,
however, by the double occur-
rence of 15 in the resulting ma-
trix. Patience, though, discovers a
way over the difficulty by adding
19 to the number represented by a
in the formula, to produce a non-
trivial alphamagic square no long-
er founded on a simple greco-latin
square. The appearance of “zero”
strikes me as an especially felici-
tous touch (see Figure 15).
Enough said about this some-
what makeshift method of con-
struction, whose introduction has
admittedly been very much a stop-
gap measure, primarily designed
to smooth over an embarrassing
semicompletion. Admittedly, sys-
tematic computer searches might
go a long way toward displacing

A Non-Greco-Latin-Based
Alphamagic Square

Thirty-one Twenty-three Eight Fifteen
©) (11) (5) (7)
Seventeen Five Twenty-one Thirty-four
©) (4) ©) (10)
Twenty-six Thirty-eight Thirteen Zero
9) (11) 8) (4)
Three Eleven Thirty-five Twenty-eight
(5) (6) (10) (11)
Figure 15
General Formula for
Order-3 Magic Cube
a —a—b b
—a=e a+b+c+d —b—d
c —-c—d d
—a+d a+b—c—d —-bt+c
a—b+c—d 0 —at+b—c+d|
b=¢ —a—b+c+d a—d
-d c+d —C
b+d —a—b-c—d atc
=b at+b —-a

Figure 16. General formula for a magic cube (zero-sum form; add k to every
cell for true generalization).
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Concentric Alphamagic Square of Order 5

Fifty-nine Eighty-nine Seventeen Forty-four Sixty-one
9) (10) ©) ©) 8)
Sixty-seven Four One hundred one | Fifty-seven Forty-one
(10) 4) (13) (10) 8)
Fifteen One hundred seven | Fifty-four One Ninety-three
@) (15) (©) () (11)
Eighty-two Fifty-one Seven One hundred four | Twenty-six
©) 8) ®) (14) ©)
Forty-seven Nineteen Ninety-one Sixty-four Forty-nine
(10) 8) ©) 9) ©)

Figure 17

General Formula for Concentric
Alphamagic Square of Order 5
ate ati a—e—f—h—i a+h a+f
at+g a+b a b—c at+c a—g
a—etf-g—j a—-b+c a atb-c ate—f+gtj
atj a-c atb+c a-b a—j
a—f a—i at+e+f+h+i a—h a—e
Figure 18

serendipity, although the factor
not to be underrated here is the
problem of stipulating exactly
what properties are being sought.
In any case, the need for a better
algorithm becomes highlighted
when we acknowledge the impos-
sibility of assigning index num-
bers to squares formed in this
fashion.* Here we have a problem
pleading for solution by comput-
er, and I am curious to learn how
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better-equipped programmers
will rise to the challenge, as
doubtless some will. (Can some-
one produce English 4X4 Alpha-
magic Square No. 1? Remember,
it need not be attractive, logologi-
cally speaking. And can anyone
identify the index numbers of Fig-
ures 7 and 157)

In the meantime, the manually-
aided transmutation of greco-latin
alloy into logological gold is a via-

ble alternative, and I hope some
readers will be encouraged to ab-
sorb the details above and go on to
construct new squares of their
own. For any who enjoy a puzzle,
as well as the chance of making
novel finds, it is an absorbing pas-
time, in some ways more akin to a
skill than a science. And the field
is not limited to order 4, or even
to alphamagic squares. Figure 16
gives a new general formula for a
3x3x3 magic cube, of which even
one alphamagic example has yet
to be discovered.

Lastly, in Figure 17, I beg to
present a final specimen of the
alphamagic art, the fruit of pen-
sive nights and laborious days: a
concentric alphamagic square of
order 5, in which the outer layer
of cells can be peeled off to leave a
central alphamagic square of or-
der 3 (No. 6). The formula for
such a square is shown in Figure
18; let any who would improve
upon this by all means try a hand.

*Part I described a simple ranking
system whereby every alphamagic is
associated with a unique index num-
ber.



Conclusion

This has been a relatively brief
reconnaissance in an unfrequent-
ed border country between the
Mountains of Mathematics and
the Lowlands of Logology, a hith-
erto unsuspected realm brought to
light through The Origin of Tree
Worship. (For an account of trav-
els in some adjoining regions,
however, see the last three items
on the reference list.) One unan-
ticipated consequence of our al-
phamagic journey has been to dis-
cover how comparatively little is
actually demanded of an arrange-
ment of numbers in qualifying as
an ordinary or, if you will, beta-
magic square.

Some may feel that here is
something that Schroeppel’s find-
ing of 275-million-odd normal
5X5 squares should have made
plain long since. Possibly so. Not-
withstanding, innumerable publi-
cations in the field attest to a
widespread, irrational suscepti-
bility to traditional magic
squares—a seemingly unflagging
appetite for the cataloging of new
specimens, no matter how inex-
haustible in supply, how under-
whelming and unworthy of atten-
tion they turn out to be on sober
assessment. Many contributors
avoid the worst excesses of this
tendency, it is true, yet a surfeit of
exclamation marks is almost a
hallmark of the magic-square lit-
erature. It would be nice to think
that the reference here was to fac-
torials, the notation “/N!” standing
for 1X2x3X...XN (a common
enough occurrence, as it happens,
in formulae relating to enumera-
tions). The truth of the matter,
however, is less prodigious, the
apparent superfluity resulting
only from the too-often-encoun-
tered gasp of “. . . magic!!!!” ex-
pressed by authors moved to rap-
tures over yet another find.

The advent of alphamagic
squares promises a breath of fresh
air in this respect, as their simul-
taneous compliance with magic

requirements at two separate lev-
els, outclasses the familiar proto-
types and gives pause for reassess-
ment in the field. And their unim-
posing, even whimsical exterior
casts incidental light on the sup-
posedly mathematical nature of
ordinary magic squares—a view, |
would suggest, as mistaken as it is
pervasive.

The widely-held apprehension
of magic squares as intrinsically
mathematical objects is really a
false impression encouraged by
the sight of numbers in matrices.
The genuine mathematical prob-
lems involved in their construc-

to do with real matrices, being
only a catchy device for marking
off certain subsets.

For all that, one cannot ignore
an important aspect of these struc-
tures that truly partakes of a
mathematical nature: their ab-
stract or Platonic status, indepen-
dent of empirical reality, reflect-
ing an absolute truth beyond all
qualification of time or space.
Should it emerge that intelligent
creatures on some far-flung planet
possess magic squares, we may be
sure that theirs will be the same as
ours.

Can the same be said of alpha-

Alphamagic squares comply with magic

requirements at two separate levels, out-
classing the familiar prototypes.

tion and enumeration reinforce
this image. But rich as they are in
mathematical connotations, the
structures themselves—the com-
pleted squares—are not merely
trivial but actually vacuous in any
true mathematical sense: they im-
part no mathematical informa-
tion, identify no mathematical re-
lationships, possess no mathemat-
ical significance.

More essentially, the fascina-
tion they command, the interest
they provoke, lies in the intrigu-
ing, counterintuitive quality of
co-incidence they embody. Here-
in only resides the ‘“magic”—a
quality evinced to a greater degree
by their alphamagic successors. It
is their concomitant satisfaction
of independent constraints that
calls forth wonder, the role of the
numbers as such being less central
than first sight supposes: at root,
these are simply a vehicle for the
expression of the magical effect.
Gardner’s anagram, “Eleven +
two = twelve + one”, for in-
stance, also exploits numbers to
produce a magic constant, but we
hardly see that as ‘“mathemati-
cal.” Likewise, the matrix or
square arrangement has nothing

magic squares? To the extent that
these include the former, yes. But
what of the mutability of number-
representations? ‘‘Archimedes
will be remembered when Aes-
chylus is forgotten, because lan-
guages die and mathematical ideas
do not.” Such is the opinion of
G. H. Hardy, the great English
number theorist, in his tender tes-
timonial A Mathematician’s
Apology. Yet without notations,
names, languages to re-member
them, how could there be any
mathematical ideas? The duality
of sign and signified is inelucta-
ble. Doubtless the alphamagic
squares of the Alpha Centaurians,
say, will differ a trifle from terres-
trial types, even as they remind us
that the alphamagic principle re-
mains transcendent.

We come thus to the close of
this preliminary investigation
touched off by the rediscovery of
the Li shu, itself no mere example
of its kind, but the great archetype
of alphamagic squares in all the
tongues of the globe, as the results
of this research have shown. Per-
haps we should not be surprised at
the English origin of the legend,
the alphamagic principle evident-
Continued on page 43
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many of them, but he wanted to
demonstrate what appears to be
an arbitrary model of technologi-
cal development. In particular,
he wanted to prove the validity of
his own pet ‘law’—the suppression
of radical potential. This law
seems to be based not on how
technology is handled, but on
some socialistic paranoia regard-
ing deliberate interference by the
powerful elements of society in
opposition to technological pro-
gress for the benefit of mankind.
Consequently, Winston has writ-
ten a very detailed history of com-
puters (and three other parts of
the information revolution) which
is false because it works from the
point of view of how things come
out, and because it ignores, mis-
states, and gets wrong important
parts of that history.

This is too bad, because Win-
ston has some important things
right, principally the appropriate
ordering of scientific discovery
and technological invention. Con-
trary to the usual assumptions,
they do not have that order. They
do not have any order. Sometimes
one and sometimes the other is
first. Sometimes they both are,
and sometimes neither is, and of-
ten they cannot be distinguished.

It is too bad because it would be
nice to have a model of technolog-
ical development that would help
us with the problem of how we too
can do great things. But it is better
to have no model than to have one
that is wrong. It is better to say—
the best thing we can now say—
that technological development
appears to be an unordered
scrambling melee. It is all right to
search for order in a melee, but it
is wrong to insist that you have
found such order when you have
not.

Finally, it is too bad because, as
I said at the outset, one does not
expect the Harvard University
Press to produce a book as flawed
as this one in the year of the 350th
anniversary of the founding of the
college.

Alphamagic Squares

Continued from page 29

ly finding its most perfect mani-
festation in the runes of Anglo-
Saxon Northumbria. But whence
came the magical formula? For,
regretfully, the modern mind
must reject the spirit of the yew
tree as a primitive if colorful su-
perstition. And yet, if we discount
the supernatural agency, of the
tree spirit, who then was the hu-
man author? Alas, no name comes
down to us from the veiled centu-
ries of prehistory.

A Druid he was, no doubt, one
high in the standing of King Mi,
perhaps; a master of abacus and
alphabet who commanded leisure
for the pursuit of learning in the
service of religious ritual and
magic. Had this runemaster so
chosen, can we doubt that he
would have found means to pass
on his name to posterity, so cun-
ning a mind, a mixture of Merlin
and Mycroft? Mayhap it was natu-
ral modesty. Or was he yet one
who understood that where there
is no mystery there can be no real
magic?
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